[1] Grcic I, Papic S, Zizek K, et al. Zero-valent iron(ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation[J]. Chemical Engineering Journal, 2012, 195:77-90.
[2] Zhang Yaobin, Liu Yiwen, Jing Yanwen, et al. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality[J]. Journal of Environmental Sciences, 2012, 24(4):720-727.
[3] Pan Fei, Luo Yin, Fan Jingjing, et al. Degradation of disperse blue E-4R in aqueous solution by zero-valent iron/ozone[J]. Clean-Soil Air Water, 2012, 40(4):422-427.
[4] Shirin S, Balakrishnan V K. Using chemical reactivity to provide insights into environmental transformations of priority organic substances:The Fe0-mediated reduction of Acid Blue 129[J]. Environmental Science & Technology, 2011, 45(24):10369-10377.
[5] Deepa K K, Sathishkumar M, Binupriya A R, et al. Sorption of Cr(Ⅵ) from dilute solutions and wastewater by live and pretreated biomass of Aspergillus flavus[J]. Chemosphere, 2006, 62(5):833-840.
[6] Cao Jiasheng, Wei Liping, Huang Qingguo, et al. Reducing degradation of azo dye by zero-valent iron in aqueous solution[J]. Chemosphere, 1999, 38(3):565-571.
[7] Ertugay N, Acar F N. Sonocatalytic degradation of Direct Blue 71 azo dye at the presence zero-valent iron(ZVI)[J]. Desalination and Water Treatment, 2013, 51:7570-7576.
[8] Arabi S, Sohrabi M R. Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron(NZVI)[J]. Acta Chimica Slovenica, 2013, 60(4):853-860.
[9] Zhang Yaobin, Jing Yanwen, Zhang Jingxin, et al. Performance of a ZVI-UASB reactor for azo dye wastewater treatment[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(2):199-204.
[10] Martins A F, Frank C D S, Wilde M L. Treatment of a trifluraline effluent by means of oxidation-coagulation with Fe(Ⅵ) and combined Fenton processes[J]. Clean-Soil Air Water, 2007, 35(1):88-99.
[11] Martins A F, Vasconcelos T G, Wilde M L. Influence of variables of the combined coagulation-Fenton-sedimentation process in the treatment of trifluraline effluent[J]. Journal of Hazardous Materials, 2005, 127(1/2/3):111-119.
[12] Martins A F, Henriques D M, Wilde M L, et al. Advanced oxidation processes in the treatment of trifluraline effluent[J]. Journal of Environmental Science and Health Part B:Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41(3):245-252.
[13] Chahbane N, Lenoir D, Souabi S, et al. Fe(Ⅲ)-TAML-catalyzed green oxidative decollorization of textile dyes in wastewater[J]. Clean-Soil Air Water, 2007, 35(5):459-464.
[14] Ramachandran G, Kumarasamy T. Degradation of textile dyeing wastewater by a modified solar photo-Fenton process using steel scrap/H2O2[J]. Clean-Soil Air Water, 2013, 41(3):267-274.
[15] Zanella G, Scharf M, Vieira G A, et al. Treatment of textile dyeing baths by photo-Fenton processes and evaluation of the reuse potentiality[J]. Quimica Nova, 2010, 33(5):1039-1043.
[16] Rodrigues C S D, Madeira L M, Boaventura R A R. Optimization of the azo dye Procion Red H-EXL degradation by Fenton's reagent using experimental design[J]. Journal of Hazardous Materials, 2009, 164(2/3):987-994.
[17] Ertugay N, Acar F N. Color and COD removal of azo dye ‘Basic Blue 9' by Fenton oxidation process:Determined of optimal parameters and kinetic study[J]. Journal of Advanced Oxidation Technologies, 2013, 16(2):268-274.
[18] Shih Y H, Tso C P. Fast decolorization of azo-dye Congo Red with zero-valent iron nanoparticles and sequential mineralization with a Fenton reaction[J]. Environmental Engineering Science, 2012, 29(10):929-933.
[19] Noubactep C, Schoner A, Woafo P. Metallic iron filters for universal access to safe drinking water[J]. Clean-Soil Air Water, 2009, 37(12):930-937.
[20] Noubactep C, Care S, Kamga F T, et al. Extending service life of household water filters by mixing metallic iron with sand[J]. Clean-Soil Air Water, 2010, 38(10):951-959.
[21] Noubactep C, Care S. Enhancing sustainability of household water filters by mixing metallic iron with porous materials[J]. Chemical Engineering Journal, 2010, 162(2):635-642.
[22] He Yang, Gao Jingfeng, Feng Fangqing, et al. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron[J]. Chemical Engineering Journal, 2012, 179:8-18.
[23] Pan Fei, Luo Yin, Zhang Lirong, et al. Degradation of Reactive Brilliant Red X-3B by zero-valent iron/activated carbon system in the presence of microwave irradiation[J]. Water Science and Technology, 2011, 64(12):2345-2351.
[24] Fan Jinhong, Ma Luming. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater[J]. Journal of Hazardous Materials, 2009, 164(2/3):1392-1397.
[25] Zhang Changqin, Zhu Zhengwang, Zhang Haifeng, et al. Rapid decolorization of Acid Orange Ⅱ aqueous solution by amorphous zero-valent iron[J]. Journal of Environmental Sciences, 2012, 24(6): 1021-1026.
[26] Chen Zhengxian, Jin Xiaoying, Chen Zuliang, et al. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science, 2011, 363(2):601-607.
[27] Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12):2045-2053.
[28] Dong Jun, Zhao Yongsheng, Zhao Ran, et al. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron[J]. Journal of Environmental Sciences, 2010, 22(11):1741-1747.
[29] De la Plata G B O, Alfano O M, Cassano A E. 2-Chlorophenol degradation via photo Fenton reaction employing zero valent iron nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233:53-59.
[30] Lin Yaotang, Weng Chihuang, Chen Fangying. Effective removal of AB24 dye by nano/micro-size zero-valent iron[J]. Separation and Purification Technology, 2008, 64(1):26-30.
[31] Le Chen, Wu Jinhua, Li Ping, et al. Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron[J]. Water Science and Technology, 2011, 64(3):754-759.
[32] Jung S C, Cho H C, Ra D G, et al. Degradation of organic dye using zero-valent iron prepared from by-product of pickling line[J]. Water Science and Technology, 2011, 64(4):960-966.
[33] Mielczarski J A, Atenas G M, Mielczarski E. Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions[J]. Applied Catalysis B:Environmental, 2005, 56(4):289-303.
[34] Devi L G, Munikrishnappa C, Nagaraj B, et al. Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S[J]. Journal of Molecular Catalysis A:Chemical, 2013, 374:125-131.
[35] Bremner D H, Burgess A E, Houllemare D, et al. Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide[J]. Applied Catalysis B:Environmental, 2006, 63(1/2):15-19.
[36] Kang S F, Liao C H, Chen M C. Pre-oxidation and coagulation of textile wastewater by the Fenton process[J]. Chemosphere, 2002, 46(6):923-928.
[37] Zhou Tao, Lu Xiaohua, Wang Jia, et al. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):193-199.
[38] dos Santos A B, de Madrid M P, Stams A J M, et al. Azo dye reduction by mesophilic and thermophilic anaerobic consortia[J]. Biotechnology Progress, 2005, 21(4):1140-1145.
[39] Pearce C I, Christie R, Boothman C, et al. Reactive azo dye reduction by Shewanella strain J18 143[J]. Biotechnology and Bioengineering, 2006, 95(4):692-703. |