[1] Mercier L, Pinnavaia T J. Access in mesoporous materials:Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation[J]. Advanced Materials, 1997, 9(6):500-503.
[2] Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Research, 2003, 37(18): 4311-4330.
[3] Mureseanu M, Reiss A, Stefanescu I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation[J]. Chemosphere, 2008, 73(9):1499-1504.
[4] Wan Shunli, Ma Minghai, Lv Lu, et al. Selective capture of thallium (Ⅰ) ion from aqueous solutions by amorphous hydrous manganese dioxide[J]. Chemical Engineering Journal, 2014, 239(1):200-206.
[5] Yang W, Zhou L, Yu J, et al. Preparation of diamine modified meso-porous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution[J]. Applied Surface Science, 2013, 282(1):38-45.
[6] Khraisheh M A M, Al-degs Y S, Mcminn W A M. Remediation of wastewater containing heavy metals using raw and modified diatomite[J]. Chemical Engineering Journal, 2004, 99(2):177-184.
[7] Lee S M, Tiwari D. Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper(Ⅱ) and lead(Ⅱ)[J]. Chemical Engineering Journal, 2013, 225(1): 128-137.
[8] Zhong Y J, You S J, Wang X H, et al. Synthesis of carbonaceous nanowire membrane for removing heavy metal ions and high water flux[J]. Chemical Engineering Journal, 2013, 226(15):217-226.
[9] Fu F, Han W, Tang B, et al. Insights into environmental remediation of heavy metal and organic pollutants:Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity[J]. Chemical Engineering Journal, 2013, 232: 534-540.
[10] Nooney R I, Kalyanaraman M, Kennedy G, et al. Heavy metal remediation using functionalized mesoporous silicas with controlled macrostructure[J]. Langmuir, 2001, 17(2):528-533.
[11] Mercier L, Pinnavaia T J. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves:factors affecting Hg(Ⅱ) uptake[J]. Environmental Science & Technology, 1998, 32(18):2749-2754.
[12] Liu A M, Hidajat K, Kawi S, et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions[J]. Chemical Communications, 2000 (13):1145-1146.
[13] Dong Zhihui, Wang Dong, Liu Xia, et al. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity[J]. Journal of Materials Chemistry A, 2014, 2:5034-5040.
[14] Ünlü N, Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions[J]. Journal of Hazardous Materials, 2006, 136(2):272-280.
[15] Oehmen A, Vergel D, Fradinho J, et al. Mercury removal from water streams through the ion exchange membrane bioreactor concept[J]. Journal of Hazardous Materials, 2014, 264:65-70.
[16] Wang Ran, Guan Sihui, Sato A, et al. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions[J]. Journal of Membrane Science, 2013, 446:376-382.
[17] Wang Gang, Chang Qing, Han Xiaoting, et al. Removal of Cr(Ⅵ) from aqueous solution by flocculant with the capacity of reduction and chelation[J]. Journal of Hazardous Materials, 2013, 248/249:115-121.
[18] 李正文, 张小伟, 章文贵, 等. 水热碳化反应条件对淀粉碳化材料性能的影响[J]. 南京工业大学学报, 2013, 35(6):97-102. |