[1] Maliyekkal S M, Lisha K P, Pradeep T. A novel cellulosemanganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(Ⅱ) from water[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 986-995.
[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[3] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[4] Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7): 3979-3986.
[5] Sreeprasad T S, Maliyekkal S M, Lisha K P, et al. Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification[J]. Journal of Hazardous Materials, 2011, 186 (1): 921-931.
[6] Jr Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[7] Li Dan, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheet[J]. Nature Nanotechnology, 2008, 3(2): 101-105.
[8] 刘巍, 赵杰, 杨丽娟. 一种用于水体净化的环糊精-石墨烯微球制备方法: CN, 103357388[P]. 2013-10-23.
[9] Louie H, Wong C, Huang Yijian, et al. A study of techniques for the preservation of mercury and other trace elements in water for analysis by inductively coupled plasma mass spectrometry(ICP-MS)[J]. Analytical Methods, 2012, 4(2): 522-529.
[10] Parker J L, Bloom N S. Preservation and storage techniques for lowlevel aqueous mercury speciation[J]. Science of the Total Environment, 2005, 337(1/2/3): 253-263.
[11] Chandra V, Kim K S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite[J]. Chemical Communications, 2011, 47(13): 3942-3944.
[12] Chen Sheng, Zhu Junwu, Wang Xin. One-step synthesis of graphenecobalt hydroxide nanocomposites and their electrochemical properties[J]. The Journal of Physical Chemistry C, 2010, 114(27): 11829-11834.
[13] Ji Zhenyuan, Shen Xiaoping, Song You, et al. In situ synthesis of graphene/cobalt nanocomposites and their magnetic properties[J]. Materials Science and Engineering: B, 2011, 176(9): 711-715.
[14] Holman H Y , Perry D L, Martin M C, et al. Real-time characterization of biogeochemical reduction of Cr(Ⅵ) on basalt surfaces by SR-FTIR imagin[J]. Geomicrobiology Journal, 1999, 16(4): 307-324.
[15] Li Jianhua, Xu Youyi, Zhu Liping, et al. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance[J]. Journal of Membrane Science, 2009, 326(2): 659-666.
[16] Ngang H P, Ooi B S, Ahmad A L, et al. Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties[J]. Chemical Engineering Journal, 2012, 197: 359-367.
[17] Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal, 2010, 156(1): 2-10.
[18] Ho Y S. Citation review of lagergreen kinetic rate equation on adsorption reaction[J]. Scientometrics, 2004, 59(1): 171-177.
[19] Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
[20] Gupta S S, Bhattacharyya K G. Kinetics of adsorption of metal ions on inorganic materials: A review[J]. Advances in Colloid and Interface Science, 2011, 162(1/2): 39-58.
[21] Furusawa T, Smith J M. Intraparticle mass transport in slurries by dynamic adsorption studies[J]. AIChE Journal, 1974, 20(1): 88-93. |