| 1 | Chae H K ,  Siberiopérez D Y ,  Kim J , et al.  A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523- 527. doi: 10.1038/nature02311
 | 
																													
																						| 2 | Eda G ,  Chhowalla M .  Graphene-based composite thin films for electronics[J]. Nano Letters, 2009, 9 (2): 814- 818. doi: 10.1021/nl8035367
 | 
																													
																						| 3 | Wang Xuan ,  Zhi Linjie ,  Müllen K .  Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8 (1): 323- 327. doi: 10.1021/nl072838r
 | 
																													
																						| 4 | Schedin F ,  Geim A K ,  Morozov S V , et al.  Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6 (9): 652- 655. doi: 10.1038/nmat1967
 | 
																													
																						| 5 | Sutter P W ,  Flege J I ,  Sutter E A .  Epitaxial graphene on ruthenium[J]. Nature Materials, 2008, 7 (5): 406- 411. doi: 10.1038/nmat2166
 | 
																													
																						| 6 | Zaman I ,  Kuan H C ,  Dai J , et al.  From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites[J]. Nanoscale, 2012, 4 (15): 4578- 4586. doi: 10.1039/c2nr30837a
 | 
																													
																						| 7 | Chen Wufeng ,  Li Sirong ,  Chen Chunhua , et al.  Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J]. Advanced Materials, 2011, 23 (47): 5679- 5683. doi: 10.1002/adma.v23.47
 | 
																													
																						| 8 | Nardecchia S ,  Carriazo D ,  Ferrer M L , et al.  Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J]. Chemical Society Reviews, 2013, 44 (21): 794- 830. URL
 | 
																													
																						| 9 | Fricke J .  Aerogels and their applications[J]. Journal of Non-Crystalline Solids, 1992, 147/148:356- 362. doi: 10.1016/S0022-3093(05)80644-1
 | 
																													
																						| 10 | Gross J ,  Fricke J ,  Hrubesh L W .  Sound propagation in SiO2 aerogels[J]. Journal of the Acoustical Society of America, 1992, 91 (4): 2004- 2006. doi: 10.1121/1.403684
 | 
																													
																						| 11 | Vinod S ,  Tiwary C S ,  Autreto P A D S , et al.  Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers[J]. Nature Communications, 2014, 5:4541. doi: 10.1038/ncomms5541
 | 
																													
																						| 12 | Bai Hua ,  Li Chun ,  Wang Xiaolin , et al.  On the gelation of graphene oxide[J]. Journal of Physical Chemistry C, 2011, 115 (13): 5545- 5551. doi: 10.1021/jp1120299
 | 
																													
																						| 13 | Wu Zhongshuai ,  Zhou Guangmin ,  Yin Lichang , et al.  Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1 (1): 107- 131. doi: 10.1016/j.nanoen.2011.11.001
 | 
																													
																						| 14 | Xiao Jianliang ,  Lv Weiyang ,  Song Yihu , et al.  Graphene/nanofiber aerogels:Performance regulation towards multiple applications in dye adsorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 338:202- 210. doi: 10.1016/j.cej.2017.12.156
 | 
																													
																						| 15 | Wang Chunchun ,  Yang Sudong ,  Ma Qing , et al.  Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds[J]. Carbon, 2017, 118:765- 771. doi: 10.1016/j.carbon.2017.04.001
 | 
																													
																						| 16 | Cao Jianyu ,  Song Lingzheng ,  Tang Jiali , et al.  Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation[J]. Applied Surface Science, 2013, 274 (2): 138- 143. URL
 | 
																													
																						| 17 | Xu Yuxi ,  Sheng Kaixuan ,  Li Chun , et al.  Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4 (7): 4324- 4330. doi: 10.1021/nn101187z
 | 
																													
																						| 18 | Sun Haiyan ,  Xu Zhen ,  Gao Chao .  Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25 (18): 2554- 2560. doi: 10.1002/adma.201204576
 | 
																													
																						| 19 | Bai Hua ,  Sheng Kaixuan ,  Zhang Pengfei , et al.  Graphene oxide/conducting polymer composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21 (46): 18653- 18658. doi: 10.1039/c1jm13918e
 | 
																													
																						| 20 | Wang Z ,  Shen X ,  Han N M , et al.  Ultralow electrical percolation in graphene aerogel/epoxy composites[J]. Chemistry of Materials, 2016, 28 (18): 6731- 6741. doi: 10.1021/acs.chemmater.6b03206
 | 
																													
																						| 21 | Park S ,  An J ,  Potts J R , et al.  Hydrazine-reduction of graphiteand graphene oxide[J]. Carbon, 2011, 49 (9): 3019- 3023. doi: 10.1016/j.carbon.2011.02.071
 | 
																													
																						| 22 | Zhang Xuetong ,  Sui Zhuyin ,  Xu Bin , et al.  Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21 (18): 6494- 6497. doi: 10.1039/c1jm10239g
 | 
																													
																						| 23 | Worsley M A ,  Kucheyev S O ,  Mason H E , et al.  Mechanically robust 3D graphene macroassembly with high surface area[J]. Chemical Communications, 2012, 48 (67): 8428- 8430. doi: 10.1039/c2cc33979j
 | 
																													
																						| 24 | Shinkai T ,  Sugiyama K ,  Ito K , et al.  Nanoporous fabrication of block copolymers via carbon dioxide swelling:Difference between CO2-swollen and nanoporous block copolymers[J]. Polymer, 2016, 100:19- 27. doi: 10.1016/j.polymer.2016.08.011
 | 
																													
																						| 25 | Ma Xiaomei ,  Li Yanhong ,  Wang Wenchao , et al.  Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior[J]. European Polymer Journal, 2013, 49 (2): 389- 396. doi: 10.1016/j.eurpolymj.2012.10.034
 | 
																													
																						| 26 | Hu Han ,  Zhao Zongbin ,  Wan Wubo , et al.  Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25 (15): 2219- 2223. doi: 10.1002/adma.201204530
 | 
																													
																						| 27 | Vickery J L ,  Patil A J ,  Mann S .  Fabrication of grapheme-polymer nanocomposites with higher-order three-dimensional architectures[J]. Advanced Materials, 2010, 21 (22): 2180- 2184. URL
 | 
																													
																						| 28 | Pandele A M ,  Ionita M ,  Crica L , et al.  Novel chitosan-poly(vinylalcohol)/graphene oxide biocomposites 3D porous scaffolds[J]. Composites Part B:Engineering, 2017, 126:81- 87. doi: 10.1016/j.compositesb.2017.06.010
 | 
																													
																						| 29 | Chen Zongping ,  Ren Wencai ,  Gao Libo , et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10 (6): 424- 428. doi: 10.1038/nmat3001
 | 
																													
																						| 30 | Estevinho B N ,  Martins I ,  Ratola N , et al.  Removal of 2, 4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant[J]. Journal of Hazardous Materials, 2007, 143 (1): 535- 540. URL
 | 
																													
																						| 31 | Zhang Long ,  Zhang Fan ,  Yang Xi , et al.  Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific Reports, 2013, 3:1408. doi: 10.1038/srep01408
 | 
																													
																						| 32 | Chen Kunfeng ,  Liu Fei ,  Song Shuyan , et al.  Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper[J]. CrysTengComm, 2014, 16 (33): 7771- 7776. doi: 10.1039/C4CE01030B
 | 
																													
																						| 33 | Riaz M A ,  Hadi P ,  Abidi I H , et al.  Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water[J]. RSC Advances, 2017, 7 (47): 29722- 29731. doi: 10.1039/C7RA02886E
 | 
																													
																						| 34 | Ren Ruipeng ,  Li Wei ,  Lv Yongkang .  A robust, superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures[J]. Journal of Colloid Interface Science, 2017, 500:63- 68. doi: 10.1016/j.jcis.2017.01.071
 | 
																													
																						| 35 | Dai Jian ,  Huang Ting ,  Tian Suqi , et al.  High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment[J]. Materials & Design, 2016, 107:187- 197. URL
 | 
																													
																						| 36 | Medeiros E S D ,  Agnelli J A M ,  Joseph K , et al.  Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics[J]. Polymer Composites, 2005, 26 (1): 1- 11. URL
 | 
																													
																						| 37 | Júnior C Z P ,  Carvalho L H D ,  Fonseca V M , et al.  Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric composites[J]. Polymer Testing, 2004, 23 (2): 131- 135. doi: 10.1016/S0142-9418(03)00071-0
 | 
																													
																						| 38 | Wei Xiao ,  Huang Ting ,  Yang Jinghui , et al.  Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents[J]. Journal of Hazardous Materials, 2017, 335:28- 38. doi: 10.1016/j.jhazmat.2017.04.030
 | 
																													
																						| 39 | Mi Haoyang ,  Jing Xin ,  Politowicz A L , et al.  Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption[J]. Carbon, 2018, 132:199- 209. doi: 10.1016/j.carbon.2018.02.033
 | 
																													
																						| 40 | Adebajo M O ,  Frost R L ,  Kloprogge J T , et al.  Porous materials for oil spill cleanup:A review of synthesis and absorbing properties[J]. Journal of Porous Materials, 2003, 10 (3): 159- 170. doi: 10.1023/A:1027484117065
 | 
																													
																						| 41 | Wan Wenchao ,  Zhang Ruiyang ,  Li Wei , et al.  Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes[J]. Environmental Science:Nano, 2016, 3 (1): 107- 113. doi: 10.1039/C5EN00125K
 | 
																													
																						| 42 | Zhan Wenwei ,  Yu Siruo ,  Gao Liang , et al.  Bioinspired assembly of carbon nanotube into graphene aerogel with "cabbagelike" hierarchical porous structure for highly efficient organic pollutants cleanup[J]. ACS Applied Materials & Interfaces, 2018, 10 (1): 1093- 1103. URL
 | 
																													
																						| 43 | Shu Di ,  Feng Feng ,  Han Hongliang , et al.  Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth[J]. Chemical Engineering Journal, 2017, 324:1- 9. doi: 10.1016/j.cej.2017.04.136
 | 
																													
																						| 44 | Du Yongxu ,  Liu Libin ,  Xiang Yu , et al.  Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent[J]. Journal of Power Sources, 2018, 379:240- 248. doi: 10.1016/j.jpowsour.2018.01.047
 | 
																													
																						| 45 | Ren Hongbo ,  Shi Xianpan ,  Zhu Jiayi , et al.  Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption[J]. Journal of Materials Science, 2016, 51 (13): 6419- 6427. doi: 10.1007/s10853-016-9939-y
 | 
																													
																						| 46 | Tran D ,  Kabiri S ,  Wang L , et al.  Engineered grapheme-nanoparticle aerogel composites for efficient removal of phosphate from water[J]. Journal of Materials Chemistry A, 2015, 3 (13): 6844- 6852. doi: 10.1039/C4TA06308B
 | 
																													
																						| 47 | Wu Tao ,  Chen Mingxi ,  Zhang Lei , et al.  Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance[J]. Journal of Materials Chemistry A, 2013, 1 (26): 7612- 7621. doi: 10.1039/c3ta10989e
 | 
																													
																						| 48 | Zhang Y ,  Yan X ,  Yan Y , et al.  The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment[J]. RSC Advances, 2018, 8:4239- 4248. doi: 10.1039/C7RA13103H
 | 
																													
																						| 49 | Chen Long ,  Li Yanhui ,  Du Qiuju , et al.  High performance agar/graphene oxide composite aerogel for methylene blue removal[J]. Carbohydrate Polymers, 2017, 155:345- 353. doi: 10.1016/j.carbpol.2016.08.047
 | 
																													
																						| 50 | Yu Ruomeng ,  Shi Yongzheng ,  Yang Dongzhi , et al.  Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants[J]. ACS Applied Materials & Interfaces, 2017, 9 (26): 21809- 21819. URL
 |