1 |
Tay J H , Liu Q S , Liu Y . Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J]. Journal of Applied Microbiology, 2001, 91 (1): 168- 175.
URL
|
2 |
Pronk M , Kreuk M K D , Bruin B D , et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84, 207- 217.
URL
|
3 |
王硕, 徐巧, 付强, 等. 好氧颗粒污泥特性、应用及形成机理研究进展[J]. 应用与环境生物学报, 2014, 20 (4): 732- 742.
URL
|
4 |
Xue Y , Guo J , Lian J , et al. Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors[J]. Biochemical Engineering Journal, 2016, 105, 136- 143.
URL
|
5 |
张志, 任洪强, 张蓉蓉, 等. pH对好氧颗粒污泥同步硝化反硝化过程的影响[J]. 中国环境科学, 2005, 25 (6): 650- 654.
URL
|
6 |
李志华,贺春博,张云姣,等.丝状菌颗粒污泥结构及形成机理研究[C]//2013中国环境科学学会学术年会浦华环保优秀论文集.中国环境科学学会:中国环境科学学会, 2013: 5.
|
7 |
李志华, 莫丹丹, 赵静, 等. 好氧颗粒污泥系统中丝状菌演替规律及其菌丝缠绕特性分析[J]. 环境工程学报, 2013, 7 (8): 2813- 2817.
URL
|
8 |
Tay J H , Liu Q S , Liu Y . The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology & Biotechnology, 2001, 57 (1/2): 227- 233.
URL
|
9 |
Wang Q , Du G , Chen J . Aerobic granular sludge cultivated under the selective pressure as a driving force[J]. Process Biochemistry, 2004, 39 (5): 557- 563.
URL
|
10 |
Devlin T R , Oleszkiewicz J A . Cultivation of aerobic granular sludge in continuous flow under various selective pressure[J]. Bioresource Technology, 2018, 253, 281.
URL
|
11 |
Qin L , Tay J H , Liu Y . Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry, 2004, 39 (5): 579- 584.
URL
|
12 |
Wang X H , Zhang H M , Yang F L , et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure[J]. Enzyme & Microbial Technology, 2007, 41 (3): 205- 211.
URL
|
13 |
Kent T R , Bott C B , Wang Z W . State of the art of aerobic granulation in continuous flow bioreactors[J]. Biotechnology Advances, 2018, 36 (4): 1139- 1166.
URL
|
14 |
Liu Y Q , Liu Y , Tay J H . The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology & Biotechnology, 2004, 65 (2): 143- 148.
URL
|
15 |
Seviour T , Yuan Z , van Loosdrecht M C , et al. Aerobic sludge granulation:a tale of two polysaccharides?[J]. Water Research, 2012, 46 (15): 4803- 4813.
URL
|
16 |
王晓慧, 刘永军, 刘喆, 等. 用三维荧光和红外技术分析好氧颗粒污泥形成初期胞外聚合物的变化[J]. 环境化学, 2016, 35 (1): 125- 132.
URL
|
17 |
刘强, 梁森, 闫军伟, 等. 污泥龄对HMBR中S-EPS及膜污染的影响[J]. 工业水处理, 2019, 39 (2): 34- 37.
URL
|
18 |
Zhang Q , Hu J , Lee D J . Aerobic granular processes:Current research trends[J]. Bioresource Technology, 2016, 210, 74- 80.
URL
|
19 |
Sousa R S L D , Mendes B A R , Milen F P I , et al. Aerobic granular sludge:cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018, 270, 678- 688.
URL
|
20 |
Tay J H , Liu Y , Tay T L , et al. Aerobic granulation technology[M]. USA: Humana Press, 2009: 109- 128.
|
21 |
高景峰, 苏凯, 张倩, 等. 底物种类和浓度对好氧颗粒污泥丝状菌膨胀的影响[J]. 北京工业大学学报, 2011, (7): 1027- 1032.
URL
|
22 |
高景峰, 苏凯, 张倩, 等. 不同碳源培养的成熟好氧颗粒污泥的分形表征[J]. 环境科学, 2010, 31 (8): 1871- 1876.
URL
|
23 |
Song Z , Pan Y , Zhang K , et al. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge[J]. Journal of Environmental Sciences, 2010, 22 (9): 1312- 1318.
URL
|
24 |
Wang X , Chen Z , Kang J , et al. The key role of inoculated sludge in fast start-up of sequencing batch reactor for the cultivation of aerobic granular sludge[J]. Journal of Environmental Sciences, 2019, 78, 127- 136.
URL
|
25 |
赵珏, 刘祖文, 龙焙, 等. 培养过程中接种部分厌氧颗粒污泥促进好氧颗粒化[J]. 中国给水排水, 2017, 33 (17): 8- 13.
URL
|
26 |
沈忱, 张玉蓉, 李艾莉, 等. 低曝气量下好氧颗粒污泥的性能分析[J]. 工业水处理, 2015, 35 (10): 76- 79.
URL
|
27 |
Morales N , ángeles Val del Río , Vázquez-Padín J R , et al. The granular biomass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration[J]. Process Biochemistry, 2016, 51 (12): 2134- 2142.
URL
|
28 |
Gonzalez-Martinez A , Muñoz-Palazon B , Maza-Márquez P , et al. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature[J]. Bioresour. Technol, 2018, 256, 22- 29.
URL
|
29 |
Gonzalez-Martinez A , Muñoz-Palazon B , Rodriguez-Sanchez A , et al. Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with cold-adapted activated sludge from Finland[J]. Bioresour. Technol, 2017, 239, 180- 189.
URL
|
30 |
Sarma S J , Tay J H , Chu A . Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2016, 35 (1): 66- 78.
URL
|
31 |
蔡春光, 刘军深, 蔡伟民, 等. 胞外多聚物在好氧颗粒化中的作用机理[J]. 中国环境科学, 2004, 24 (5): 623- 626.
URL
|
32 |
Liao B Q , Allen D G , Droppo I G , et al. Surface properties of activated sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35 (2): 339- 350.
URL
|
33 |
Li Z H , Kuba T , Kusuda T . The influence of starvation phase on the properties and the development of aerobic granules[J]. Enzyme & Microbial Technology, 2006, 38 (5): 670- 674.
URL
|
34 |
Corsino S F , Di T D , Torregrossa M , et al. Aerobic granular sludge treating high strength citrus wastewater:Analysis of pH and organic loading rate effect on kinetics, performance and stability[J]. Journal of Environmental Management, 2018, 214, 23- 35.
URL
|
35 |
Liu Y , Tay J H . The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36 (7): 1653- 1665.
URL
|
36 |
Jin R C , Zheng P , Mahmood Q , et al. Performance of a nitrifying airlift reactor using granular sludge[J]. Separation & Purification Technology, 2008, 63 (3): 670- 675.
URL
|
37 |
Zhou D , Dong S , Gao L , et al. Distribution characteristics of extracellular polymeric substances and cells of aerobic granules cultivated in a continuous-flow airlift reactor[J]. Journal of Chemical Technology & Biotechnology, 2012, 88 (5): 942- 947.
URL
|
38 |
Chen X , Yuan L , Wenjuan L U , et al. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Frontiers of Environmental Science & Engineering, 2015, 9 (2): 1- 10.
URL
|
39 |
Chiu Z C , Chen M Y , Lee D J , et al. Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure[J]. Applied Microbiology & Biotechnology, 2007, 75 (3): 685- 691.
URL
|
40 |
Chiu Z C , Chen M Y , Lee D J , et al. Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels[J]. Water Research, 2007, 41 (4): 884- 892.
URL
|
41 |
Liang Y , Li D , Su Q , et al. Performances and microbial characteristics of granular sludge for autotrophic nitrogen removal from synthetic and mainstream domestic sewage[J]. Chemical Engineering Journal, 2018, 338, 564- 571.
URL
|
42 |
Coma M , Verawaty M , Pijuan M , et al. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J]. Bioresource Technology, 2012, 103 (1): 101- 108.
URL
|
43 |
Liu X , Wu S , Zhang D , et al. Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system[J]. Journal of Environmental Sciences, 2018, 67 (5): 318- 329.
URL
|
44 |
Ahlem F , Yolaine B , Mathieu S . Effects of oxygen concentration on the nitrifying activity of an aerobic hybrid granular sludge reactor[J]. Water Science & Technology, 2012, 65 (2): 289- 295.
URL
|
45 |
Figdore B A , Stensel H D , Winkler M H . Comparison of different aerobic granular sludge types for activated sludge nitrification bioaugmentation potential[J]. Bioresour. Technol, 2017, 251, 189- 196.
URL
|
46 |
Ashish S , Farrukh B , Asad A , et al. Aerobic granulation technology:Laboratory studies to full scale practices[J]. Journal of Cleaner Production, 2018, 197, 616- 632.
URL
|
47 |
Bassin J P , Pronk M , Muyzer G , et al. Effect of elevated salt concentrations on the aerobic granular sludge process:linking microbial activity with microbial community structure[J]. Applied & Environmental Microbiology, 2011, 77 (22): 7942- 7953.
URL
|
48 |
Henriet O , Meunier C , Henry P , et al. Improving phosphorus removal in aerobic granular sludge processes through selective microbial management[J]. Bioresource Technology, 2016, 211, 298- 306.
URL
|
49 |
Li D , Lü Y , Zeng H , et al. Enhanced biological phosphorus removal using granules in continuous-flow reactor[J]. Chemical Engineering Journal, 2016, 298, 107- 116.
URL
|
50 |
Duque A F , Bessa V S , Carvalho M F , et al. 2-fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor[J]. Water Research, 2011, 45 (20): 6745- 6752.
URL
|
51 |
Kiran K R G , Sarvajith M , Nancharaiah Y V , et al. 2, 4-Dinitrotoluene removal in aerobic granular biomass sequencing batch reactors[J]. International Biodeterioration & Biodegradation, 2017, 119, 56- 65.
URL
|
52 |
Kiran K R G , Nancharaiah Y V , Venugopalan V P . Aerobic granular sludge mediated biodegradation of an organophosphorous ester, dibutylphosphite[J]. Fems Microbiology Letters, 2015, 359 (1): 110- 115.
URL
|
53 |
Chen C , Ming J , Yoza B A , et al. Characterization of aerobic granular sludge used for the treatment of petroleum wastewater[J]. Bioresource Technology, 2019, 271, 353- 359.
URL
|
54 |
Nancharaiah Y V , Kiran G K R . Aerobic granular sludge technology:Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247, 1128- 1143.
URL
|
55 |
高永青, 张帅, 张树军, 等. 实际城市污水培养好氧颗粒污泥的中试研究[J]. 中国给水排水, 2017, 33 (5): 22- 25.
URL
|
56 |
黄思琦, 邓风, 佘谱颖, 等. 好氧颗粒污泥快速培养及其稳定性研究[J]. 工业水处理, 2018, 38 (7): 66- 69.
URL
|