| 1 | Fulekar M ,  Singh A ,  Bhaduri A M .  Genetic engineering strategies for enhancing phytoremediation of heavy metals[J]. African Journal of Biotechnology, 2009, 8 (4): 94- 99. URL
 | 
																													
																						| 2 | 陆海, 彭琼.  水体重金属污染现状及治理技术[J]. 当代化工研究, 2019, 37 (1): 27- 28. URL
 | 
																													
																						| 3 | Yandan Li ,  Bi Erping ,  Chen Honghan .  Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite[J]. Ecotoxicology and Environmental Safety, 2019, 178, 43- 50. URL
 | 
																													
																						| 4 | Litvin V ,  Galagan R ,  Minaev B .  Synthesis and properties of synthetic analogs of natural humic acids[J]. Russian Journal of Applied Chemistry, 2012, 85 (2): 296- 302. URL
 | 
																													
																						| 5 | Kinniburgh D G ,  Milne C J ,  Benedetti M F , et al.  Metal ion binding by humic acid:application of the NICA-Donnan model[J]. Environmental Science & Technology, 1996, 30 (5): 1687- 1698. URL
 | 
																													
																						| 6 | Xu Piao ,  Zeng Guangming ,  Dan Lianhuang , et al.  Use of iron oxide nanomaterials in wastewater treatment:a review[J]. Science of the Total Environment, 2012, 424, 1- 10. URL
 | 
																													
																						| 7 | 艾翠玲, 雷英杰, 张国春, 等.  纳米铁氧化物吸附处理重金属废水的研究进展[J]. 化工环保, 2015, 35 (6): 593- 598. URL
 | 
																													
																						| 8 | Adhikari D ,  Poulson S R ,  Sumaila S , et al.  Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes[J]. Chemical Geology, 2016, 430, 13- 20. URL
 | 
																													
																						| 9 | Schwertmann U .  Iron in soils and clay minerals[M]. Germany: Springer, 1988: 267- 308. | 
																													
																						| 10 | Xu Piao ,  Zeng Guangming ,  Dan Lianhuang , et al.  Water-soluble iron oxide nanoparticles with high stability and selective surface functionality[J]. Langmuir, 2011, 27 (14): 8990- 8997. URL
 | 
																													
																						| 11 | Jakubec P ,  Malina O ,  Tucek J , et al.  Crystal structure- and morphology-driven electrochemistry of iron oxide nanoparticles in hydrogen peroxide detection[J]. Advanced Materials Interfaces, 2019, 6 (3): 1801549. URL
 | 
																													
																						| 12 | Parsons J ,  Luna C ,  Botez C , et al.  Microwave-assisted synthesis of iron(Ⅲ) oxyhydroxides/ǒxides characterized using transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy[J]. Journal of Physics and Chemistry of Solids, 2009, 70 (3/4): 555- 560. URL
 | 
																													
																						| 13 | Kurbatov G ,  Darque-Ceretti E ,  Aucouturier M .  Characterization of hydroxylated oxide film on iron surfaces and its acid-base properties using XPS[J]. Surface and Interface Analysis, 1992, 18 (12): 811- 820. URL
 | 
																													
																						| 14 | 丁昌璞.  中国土壤电化学的发展历程[J]. 土壤, 2013, 45 (5): 780- 784. URL
 | 
																													
																						| 15 | 管宇立.水铁矿及其与腐植酸共沉物对水溶液中镉的吸附作用研究[D].兰州:兰州大学, 2018. URL
 | 
																													
																						| 16 | Zaloga J ,  Janko C ,  Agarwal R , et al.  Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles[J]. International Journal of Molecular Sciences, 2015, 16 (5): 9368- 9384. URL
 | 
																													
																						| 17 | 刘文莉, 孙伟, 熊辉.  针铁矿对垃圾焚烧飞灰中重金属离子的固化作用及机理分析[J]. 矿产保护与利用, 2018, 218 (6): 93- 99. URL
 | 
																													
																						| 18 | 王帅, 李翠兰, 王楠, 等.  介质离子强度对Cu2+在针铁矿和δ-MnO2表面吸附影响的红外光谱[J]. 吉林大学学报(理学版), 2011, 49 (2): 353- 357. URL
 | 
																													
																						| 19 | 周代华, 李学垣, 徐凤琳.  Cu2+在针铁矿表面吸附的红外光谱研究[J]. 华中农业大学学报, 1996, 15 (2): 153- 156. URL
 | 
																													
																						| 20 | 庞禄.铁锰复合氧化物对重金属铬(Ⅲ)、砷(Ⅲ)吸附/氧化特征研究[D].重庆:西南大学, 2014. URL
 | 
																													
																						| 21 | 李仲谨, 李铭杰, 王海峰, 等.  腐植酸类物质应用研究进展[J]. 化学研究, 2009, 20 (4): 103- 107. URL
 | 
																													
																						| 22 | Park C M ,  Han J ,  Chu K H , et al.  Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar:experiment and modeling[J]. Journal of Industrial and Engineering Chemistry, 2017, 48, 186- 193. URL
 | 
																													
																						| 23 | Ong K J ,  Felix L C ,  Boyle D , et al.  Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish[J]. Environmental Science:Nano, 2017, 4 (1): 127- 137. URL
 | 
																													
																						| 24 | Lu Songhua ,  Zhu Kairuo ,  Guo Han , et al.  The influence of humic acid on U(Ⅵ) sequestration by calcium titanate[J]. Chemical Engineering Journal, 2019, 368, 598- 605. URL
 | 
																													
																						| 25 | 程亮, 侯翠红, 徐丽, 等.  纳米腐殖酸动态吸附废水中镉离子及其洗脱特性[J]. 化工学报, 2016, 67 (4): 1348- 1356. URL
 | 
																													
																						| 26 | 胡立芳, 龙於洋, 沈东升, 等.  腐殖酸及钙盐对危险废物焚烧残渣中Cu的协同稳定化作用[J]. 科技通报, 2016, 32 (2): 209- 213. URL
 | 
																													
																						| 27 | 蒋海燕, 周书葵, 曾光明, 等.  不溶性腐殖酸对U(Ⅵ)的吸附动力学和吸附热力学[J]. 安全与环境学报, 2015, 15 (1): 193- 198. URL
 | 
																													
																						| 28 | 王维, 赵丽媛.  掺杂生物膜组分对黄河乌海段表层沉积物吸附Cd2+的影响研究[J]. 环境研究与监测, 2014, 26 (1): 17- 21. URL
 | 
																													
																						| 29 | Xiong Juan ,  Weng Liping ,  Luuk K , et al.  Effect of soil fulvic and humic acids on Pb binding to the goethite/solution interface:ligand charge distribution modeling and speciation distribution of Pb[J]. Environmental Science & Technology, 2018, 52, 1348- 1356. URL
 | 
																													
																						| 30 | Zhang Yanqing ,  Li Meng ,  Wu Si , et al.  Research on hydrophilicity and hydrophobicity of adsorption of NOM on metal oxide/water interface[J]. Desalination and Water Treatment, 2014, 57 (5): 1940- 1948. URL
 | 
																													
																						| 31 | Sander S ,  Mosley L M ,  Hunter K A .  Investigation of interparticle forces in natural waters:Effects of adsorbed humic acids on iron oxide and alumina surface properties[J]. Environmental Science & Technology, 2004, 38 (18): 4791- 4796. URL
 | 
																													
																						| 32 | Wang Hui ,  Zhu Jun ,  Fu Qingling , et al.  Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes[J]. Pedosphere, 2015, 25 (3): 405- 414. URL
 | 
																													
																						| 33 | Bian S W ,  Mudunkotuwa I A ,  Rupasinghe T , et al.  Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:influence of pH, ionic strength, size, and adsorption of humic acid[J]. Langmuir, 2011, 27 (10): 6059- 6068. URL
 | 
																													
																						| 34 | Arnarson T S ,  Keil R G .  Mechanisms of pore water organic matter adsorption to montmorillonite[J]. Marine Chemistry, 2000, 71 (3/4): 309- 320. URL
 | 
																													
																						| 35 | Illés E ,  Tombácz E .  The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid and Interface Science, 2006, 295 (1): 115- 123. URL
 | 
																													
																						| 36 | 谢水波, 冯敏, 杨金辉, 等.  腐殖酸改性针铁矿对铀U(Ⅵ)的吸附性能及机理研究[J]. 环境科学学报, 2014, 34 (9): 2271- 2278. URL
 | 
																													
																						| 37 | 罗文倩, 魏世强.  镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J]. 农业环境科学学报, 2009, 28 (5): 897- 902. URL
 | 
																													
																						| 38 | 肖萍.胡敏酸作用下针铁矿对重金属铅环境行为的影响[D].重庆:西南大学, 2009. URL
 | 
																													
																						| 39 | 王丹丽, 王恩德.  针铁矿及腐殖质对水体重金属离子的吸附作用[J]. 安全与环境学报, 2001, 1 (4): 1- 4. URL
 | 
																													
																						| 40 | 马健伟, 任淑鹏, 宋亚瑞, 等.  零价铁技术在废水处理领域的应用研究进展[J]. 化学通报, 2019, 82 (1): 3- 11. URL
 |