1 |
Andujar N , Galvez-Ontiveros Y , Zafra-Gomez A , et al. Bisphenol A analogues in food and their hormonal and obesogenic effects:A Review[J]. Nutrients, 2019, 11 (9): 2136.
doi: 10.3390/nu11092136
|
2 |
San Pedro-Cedillo L , Mendez-Novelo R I , Hernandez-Nunez E , et al. Removal of BPA from landfill leachates using Fenton-adsorption process[J]. Quimica Nova, 2019, 42 (4): 418- 424.
URL
|
3 |
Zhang Haifeng , Zhang Yangping , Li Jiabao , et al. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China[J]. Science of the Total Environment, 2019, 655 (10): 607- 613.
URL
|
4 |
Dualde P , Pardo O , Corpas-Burgos F , et al. Biomonitoring of bisphenols A, F, S in human milk and probabilistic risk assessment for breastfed infants[J]. Science of the Total Environment, 2019, 668 (6): 797- 805.
URL
|
5 |
李红娜, 郭萍, 汪煜, 等. 紫外降解双酚A的因素敏感性分析及机理探讨[J]. 环境科学与技术, 2017, 40 (6): 1- 6.
URL
|
6 |
Kondrakov A O , Ignatev A N , Frimmel F H , et al. Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis:A comparative study[J]. Applied Catalysis B:Environment, 2014, 160/161, 106- 114.
doi: 10.1016/j.apcatb.2014.05.007
|
7 |
Olmez-Hanci T , Dursun D , Aydin E , et al. S2O82-/UV-C and H2O2/UV-C treatment of bisphenol A:Assessment of toxicity, estrogenic activity, degradation products and results in real water[J]. Chemosphere, 2015, 119, 115- 123.
doi: 10.1016/j.chemosphere.2014.06.020
|
8 |
李晓蕊, 王媛, 雷瑶. 真空紫外光化学降解双酚A的影响因素研究[J]. 水处理技术, 2018, 44 (12): 51- 55.
URL
|
9 |
Felis E . Degradation of bisphenol a using UV and UV/H2O2 processes[J]. Water Environment Research, 2011, 83 (12): 2154- 2158.
doi: 10.2175/106143011X12989211841214
|
10 |
Silva J C C D , Teodoro J A R , Aquino S F , et al. Photodegradation of bisphenol A in aqueous medium:Monitoring and identification of by-products by liquid chromatography coupled to high-resolution mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2014, 28 (9): 987- 994.
doi: 10.1002/rcm.6863
|
11 |
Yang L X , Li Z Y , Jiang H M , et al. Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O[J]. Applied Catalysis B:Environment, 2016, 183, 75- 85.
doi: 10.1016/j.apcatb.2015.10.023
|
12 |
Sanche-polo M , Daiem M M A , Ocampo-perz R , et al. Comparative study of the photodegradation of bisphenol A by·OH, SO4·- and CO3·-/HCO3 radicals in aqueous phase[J]. Science of the Total Environment, 2013, 463, 423- 431.
URL
|
13 |
Zhang Y N , Qin N , Li J Y , et al. Facet exposure-dependent photoelectrocatalytic oxidation kinetics of bisphenol A on nanocrystalline {001} TiO2/carbon aerogel electrode[J]. Applied Catalysis B:Environment, 2017, 216, 30- 40.
doi: 10.1016/j.apcatb.2017.05.042
|
14 |
Kang Y M , Kim M K , Zoh K D . Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2, on the kinetics and degradation mechanism of bisphenol A during UV photolysis[J]. Chemosphere, 2018, 204, 148- 155.
doi: 10.1016/j.chemosphere.2018.04.015
|
15 |
Sharma J , Mishra I M , Kumar V . Degradation and mineralization of bisphenol A(BPA) in aqueous solution using advanced oxidation processes:UV/H2O2 and UV/S2O82- oxidation systems[J]. Journal of Environmental Management, 2015, 156, 266- 275.
URL
|
16 |
Yoon S H , Jeong S , Lee S . Oxidation of bisphenol A by UV/S2O82-:comparison with UV/H2O2[J]. Environmental Technology, 2012, 33 (1): 123- 128.
URL
|
17 |
Gholamreza M , Mojtaba P , Sakine S , et al. The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process:Degradation, mineralization, and cytotoxicity assessment[J]. Chemical Engineering Journal, 2018, 331, 755- 764.
doi: 10.1016/j.cej.2017.09.009
|
18 |
Chen P J , Linden K G , Hinton D E , et al. Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation[J]. Chemosphere, 2006, 65 (7): 1094- 1102.
doi: 10.1016/j.chemosphere.2006.04.048
|
19 |
叶林静, 关卫省, 李宇亮. 高级氧化技术降解双酚A的研究进展[J]. 化工进展, 2013, 32 (4): 909- 918.
URL
|
20 |
Katsumata H , Kawabe S , Kaneco S , et al. Degradation of bisphenol A in water by the photo-Fenton reaction[J]. Journal of Photochemistry and Photobiogy A-Chemistry, 2004, 162 (2): 297- 305.
URL
|
21 |
Tai J , Chen C H , Kuo Y R , et al. Synthesis and characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation[J]. Reaction Kinetics Mechanisms and Catalysis, 2015, 114 (2): 753- 766.
doi: 10.1007/s11144-014-0783-2
|
22 |
张雄军, 彭书传, 朱承驻, 等. 高铁酸钾/254 nm紫外光氧化降解水体中双酚A[J]. 环境化学, 2014, (4): 643- 648.
URL
|
23 |
Pérez-Moya M , Kaisto T , Navarro M , et al. Study of the degradation performance(TOC, BOD, and toxicity) of bisphenol A by the photoFenton process[J]. Environmental Science and Pollution Research, 2017, 24 (7): 6241- 6251.
doi: 10.1007/s11356-016-7386-6
|
24 |
Dudziak M , Burdzik E . Oxidation of bisphenol A from simulated and real urban wastewater effluents by UV, O3 and UV/O3[J]. Desalination and Water Treatment, 2014, 57 (3): 1- 9.
URL
|
25 |
Liao Gaozu , Zhu Dongyun , Zheng Jinxian , et al. Efficient mineralization of bisphenol A by photocatalytic ozonation with TiO2-graphene hybrid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 300- 305.
doi: 10.1016/j.jtice.2016.07.035
|
26 |
Niels W , Ze L , Anton N , et al. Micropollutant elimination by O3, UV and plasma-based AOPs:An evaluation of treatment and energy costs[J]. Chemosphere, 2019, 715- 724.
URL
|
27 |
牛军峰, 余刚, 刘希涛, 等. 水相中POPs光化学降解研究进展[J]. 化学进展, 2005, 17 (5): 938- 948.
URL
|
28 |
范巍, 王占生, 杨忠平. 纳米TiO2光催化降解有机废水及改性研究进展[J]. 工业水处理, 2008, 28 (12): 14- 18.
URL
|
29 |
Gao B , Lim T M , Subagio D P , et al. Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A[J]. Applied Catalysis A:General, 2010, 375 (1): 107- 115.
doi: 10.1016/j.apcata.2009.12.025
|
30 |
Jia Chenzhong , Wang Yanxin , Zhang Caixiang , et al. Photocatalytic degradation of bisphenol a in aqueous suspensions of titanium dioxide[J]. Environmental Engineering Science, 2012, 29 (7): 630- 637.
doi: 10.1089/ees.2011.0132
|
31 |
王旭红, 马冠云, 孙悦, 等. S掺杂纳米TiO2对电子结构及光催化活性影响的研究[J]. 材料导报, 2014, 28 (16): 19- 22.
URL
|
32 |
Chiang L F , Doong R A . Cu-TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation[J]. Journal of Hazardous Materials, 2014, 277 (4): 84- 92.
URL
|
33 |
Hsien K J , Tsai W T , Su T Y . Preparation of diatomite-TiO2 composite for photodegradation of bisphenol-A in water[J]. Journal of SolGel Science and Technology, 2009, 51 (1): 63- 69.
doi: 10.1007/s10971-009-1921-6
|
34 |
Bosrjan E , Petra H , Katja P , et al. Glass fiber-supported TiO2 photocatalyst:Efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs[J]. Applied Catalysis B:Environment, 2016, 183, 149- 158.
doi: 10.1016/j.apcatb.2015.10.033
|
35 |
Bistan M , Tisler T , Pintar A . Catalytic and photocatalytic oxidation of aqueous bisphenol A solutions:removal, toxicity, and estrogenicity[J]. Industrial & Engineering Chemistry Research, 2012, 51 (26): 8826- 8834.
URL
|
36 |
刘旭, 张西慧. 改性TiO2光催化剂催化降解双酚A的研究进展[J]. 工业水处理, 2018, 38 (4): 6- 10.
URL
|
37 |
Wang Xiaoping , Tang Y X , Leiw M Y , et al. Solvothermal synthesis of Fe-C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water[J]. Applied Catalysis A:General, 2011, 409, 257- 266.
URL
|
38 |
Lu Nan , Lu Ying , Liu Fangyuan , et al. H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A(BPA):kinetics, toxicity and degradation pathways[J]. Chemosphere, 2013, 91 (9): 1266- 1272.
doi: 10.1016/j.chemosphere.2013.02.023
|
39 |
卢江芮, 李坦, 刘建新, 等. 晶面可控氯氧铋的制备及光催化性能研究[J]. 人工晶体学报, 2018, 47 (5): 990- 995.
URL
|
40 |
Yin Sheng , Ding Yi , Hu Qingsong , et al. CQDs modified PbBiO2Cl nanosheets with improved molecular oxygen activation ability for photodegradation of organic contaminants[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2019, 382 (9): 111921.
URL
|
41 |
赫荣安, 曹少文, 余家国. 碘氧化铋光催化材料的研究进展[J]. 中国材料进展, 2017, 36 (1): 17- 24.
URL
|
42 |
Oh W D , Lok L W , Veksha A , et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4, under solar irradiation:Performance and mechanistic studies[J]. Chemical Engineering Journal, 2017, 333 (9): 739- 739.
URL
|
43 |
Li Yuanyuan , Fang Yu , Cao Zhenlei , et al. Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible lightdriven degradation of pharmaceutical and phenolic micropollutants[J]. Applied Catalysis B:Environmental, 2019, 250 (8): 150- 162.
URL
|
44 |
杨兆辉, 闫绍轩, 张作友, 等. 改性叶绿素光催化剂的制备及光催化降解双酚A[J]. 水处理技术, 2013, 39 (10): 44- 49.
URL
|
45 |
Daskalaki V M , Fulgione I , Frontistis Z , et al. Solar light-induced photoelectrocatalytic degradation of bisphenol A on TiO2/ITO film anode and BDD cathode[J]. Catalysis Today, 2013, 209 (Complete): 74- 78.
URL
|
46 |
Chai S , Zhao G , Zhang Y N , et al. Selective photoelectrocatalytic degradation of recalcitrant contaminant driven by an n-p heterojunction nanoelectrode with molecular recognition ability[J]. Environmental Science & Technology, 2012, 46 (18): 10182- 10190.
URL
|
47 |
王理明, 姚秉华, 裴亮. Pt掺杂TiO2纳米管制备及其光电催化双酚A[J]. 环境工程学报, 2014, 8 (12): 5289- 5292.
URL
|
48 |
Zhao Li , Ji Yuefei , Kong Deyang , et al. Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process[J]. Chemical Engineering Journal, 2016, 303, 458- 466.
doi: 10.1016/j.cej.2016.06.016
|
49 |
Sharma J , Mishra I M , Kumar V , et al. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate(PMS):Kinetics, influence of coexisting chemicals and degradation pathway[J]. Chemical Engineering Journal, 2015, 276, 193- 204.
doi: 10.1016/j.cej.2015.04.021
|
50 |
Sharma J , Mishra I M , Kumar V , et al. Mechanistic study of photooxidation of Bisphenol-A(BPA) with hydrogen peroxide(H2O2) and sodium persulfate(SPS)[J]. Journal of Environmental Management, 2016, 166, 12- 22.
doi: 10.1016/j.jenvman.2015.09.043
|
51 |
栾海彬, 杨立翔, 鲁帅, 等. 热活化过硫酸盐对双酚A的降解及其机理[J]. 环境工程学报, 2016, 10 (5): 2459- 2464.
URL
|
52 |
Ozyildiz G , Olmez-Hanci T , Arslan-Alaton I . Effect of nano-scale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process[J]. Applied Catalysis B:Environment, 2019, 254, 135- 144.
doi: 10.1016/j.apcatb.2019.04.092
|
53 |
Khandarkhaeva M Batoeva A , Sizykh M , et al. Photo-Fenton-like degradation of bisphenol A by persulfate and solar irradiation[J]. Journal of Environmental Management, 2019, 249 (11): 1- 10.
URL
|
54 |
Yang Lei , Xu Lu , Bai Xue , et al. Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water[J]. Journal of Hazardous Materials, 2019, 365 (3): 107- 117.
URL
|
55 |
Xu Lu , Yang Lei , Bai Xue , et al. Persulfate activation towards organic decomposition and Cr(Ⅵ) reduction achieved by a novel CQDs-TiO2-x/rGO nanocomposite[J]. Chemical Engineering Journal, 2019, 373 (10): 238- 250.
URL
|
56 |
Ke Qian , Shi Yanpeng , Liu Yixuan , et al. Enhanced catalytic degradation of bisphenol A by hemin-MOFs supported on boron nitride via the photo-assisted heterogeneous activation of persulfate[J]. Separation and Purification Technology, 2019, 229 (12): 1- 7.
URL
|