1 |
Helal A , Yamani Z H , Cordova K E , et al. Multivariate metal-organic frameworks[J]. National Science Review, 2017, 4 (3): 296- 298.
doi: 10.1093/nsr/nwx013
|
2 |
Wang C C , Ho Y S . Research trend of metal-organic frameworks:A bibliometric analysis[J]. Scientometrics, 2016, 109 (1): 481- 513.
doi: 10.1007/s11192-016-1986-2
|
3 |
Li J , Wang L , Liu Y , et al. The research trends of metal-organic frameworks in environmental science:a review based on bibliometric analysis[J]. Environmental Science and Pollution Research International, 2020, 27, 19265- 19284.
doi: 10.1007/s11356-020-08241-1
|
4 |
Lustig W P , Mukherjee S , Rudd N D , et al. Metal-organic frameworks:Functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46 (11): 3242- 3285.
doi: 10.1039/C6CS00930A
|
5 |
Müller-Buschbaum K , Beuerle F , Feldmann C . MOF based luminescence tuning and chemical/physical sensing[J]. Microporous and Mesoporous Materials, 2015, 216, 171- 199.
doi: 10.1016/j.micromeso.2015.03.036
|
6 |
Kumar P , Deep A , Kim K-H . Metal organic frameworks for sensing applications[J]. Trends in Analytical Chemistry, 2015, 73, 39- 53.
doi: 10.1016/j.trac.2015.04.009
|
7 |
Nagarkar S S , Desai A V , Ghosh S K . A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase[J]. Chemical Communications, 2014, 50 (64): 89158918.
URL
|
8 |
Wang B , Lv X L , Feng D , et al. Highly stable Zr(Ⅳ)-based metalorganic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138 (19): 6204- 6216.
doi: 10.1021/jacs.6b01663
|
9 |
Weng H , Yan B . A flexible Tb(Ⅲ) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules[J]. Sensors and Actuators B:Chemical, 2016, 228, 702- 708.
doi: 10.1016/j.snb.2016.01.101
|
10 |
Wang C Y , Fu H , Wang P , et al. Highly sensitive and selective detect of p-arsanilic acid with a new water-stable europium metalorganic framework[J]. Applied Organometallic Chemistry, 2019, 33 (8): e5021.
|
11 |
Du X D , Wang C C , Zhong J , et al. Highly efficient removal of Pb2+ by a polyoxomolybdate-based organic-inorganic hybrid material {(4-Hap)4[Mo8O26]}[J]. Journal of Environmental Chemical Engineering, 2017, 5 (2): 1866- 1873.
|
12 |
Zhang Y , Sheng S , Mao S , et al. Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer[J]. Water Research, 2019, 163, 114883.
doi: 10.1016/j.watres.2019.114883
|
13 |
Joseph L , Jun B M , Jang M , et al. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents:A review[J]. Chemical Engineering Journal, 2019, 369, 928- 946.
doi: 10.1016/j.cej.2019.03.173
|
14 |
Pi Y , Li X , Xia Q , et al. Adsorptive and photocatalytic removal of Persistent Organic Pollutants(POPs) in water by metal-organic frameworks(MOFs)[J]. Chemical Engineering Journal, 2018, 337, 351371.
URL
|
15 |
Khan N A , Hasan Z , Jhung S H . Adsorptive removal of hazardous materials using metal-organic frameworks(MOFs):A review[J]. Journal of Hazardous Materials, 2013, 244-245, 444- 456.
doi: 10.1016/j.jhazmat.2012.11.011
|
16 |
Du X D , Wang C C , Liu J G , et al. Extensive and selective adsorption of ZIF-67 towards organic dyes:Performance and mechanism[J]. Journal of Colloid and Interface Science, 2017, 506, 437- 441.
doi: 10.1016/j.jcis.2017.07.073
|
17 |
Li J J , Wang C C , Fu H F , et al. High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal-organic framework[J]. Dalton Transactions, 2017, 46 (31): 10197- 10201.
doi: 10.1039/C7DT02208E
|
18 |
Dhaka S , Kumar R , Deep A , et al. Metal-organic frameworks(MOFs) for the removal of emerging contaminants from aquatic environments[J]. Coordination Chemistry Reviews, 2019, 380, 330- 352.
doi: 10.1016/j.ccr.2018.10.003
|
19 |
Liu K , Zhang S , Hu X , et al. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks:comparing DFT calculations with aqueous sorption experimen ts[J]. Environmental Science & Technology, 2015, 49 (14): 86578665.
|
20 |
Jayaramulu K , Geyer F , Petr M , et al. Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption[J]. Advanced Materials, 2017, 29 (12): 1605307.
doi: 10.1002/adma.201605307
|
21 |
Li Y , Yang Z , Wang Y , et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nature Communications, 2017, 8 (1): 1- 11.
doi: 10.1038/s41467-016-0009-6
|
22 |
Tian C , Zhao J , Ou X , et al. Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations[J]. Environmental Science & Technology, 2018, 52 (6): 3466- 3475.
URL
|
23 |
Pang D , Wang C C , Wang P , et al. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers[J]. Chemosphere, 2020, 254, 126829.
doi: 10.1016/j.chemosphere.2020.126829
|
24 |
Pang D , Wang P , Fu H , et al. Highly efficient removal of As(V) using metal-organic framework BUC-17[J]. SN Applied Sciences, 2020, 2 (2): 184.
doi: 10.1007/s42452-020-1981-3
|
25 |
Wang C Y , Zhang X W , Wang J W , et al. A new one-dimensional coordination polymer synthesized from zinc and guanazole:Superior capture of organic arsenics[J]. Applied Organometallic Chemistry, 2020, 34 (6): e5637.
|
26 |
Bian Y , Xiong N , Zhu G . Technology for the remediation of water pollution:A review on the fabrication of metal organic frameworks[J]. Processes, 2018, 6 (8): 122.
doi: 10.3390/pr6080122
|
27 |
Feng M , Zhang P , Zhou H C , et al. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides:A review[J]. Chemosphere, 2018, 209, 783- 800.
doi: 10.1016/j.chemosphere.2018.06.114
|
28 |
Kobielska P A , Howarth A J , Farha O K , et al. Metal-organic frameworks for heavy metal removal from water[J]. Coordination Chemistry Reviews, 2018, 358, 92- 107.
doi: 10.1016/j.ccr.2017.12.010
|
29 |
Li J , Wang X , Zhao G , et al. Metal-organic framework-based materials:superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47 (7): 2322- 2356.
doi: 10.1039/C7CS00543A
|
30 |
Okoro H K , Ayika S O , Ngila J C , et al. Rising profile on the use of metal-organic frameworks(MOFs) for the removal of heavy metals from the environment:An overview[J]. Applied Water Science, 2018, 169 (8)
|
31 |
Wang C , Luan J , Wu C . Metal-organic frameworks for aquatic arsenic removal[J]. Water Research, 2019, 158, 370- 382.
doi: 10.1016/j.watres.2019.04.043
|
32 |
Rasheed T , Bilal M , Hassan A A , et al. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents[J]. Environmental Research, 2020, 185, 109436.
doi: 10.1016/j.envres.2020.109436
|
33 |
Sheng D , Zhu L , Dai X , et al. Successful decontamination of 99TcO4 in groundwater at legacy nuclear sites by a cationic metal-organic framework with hydrophobic pockets[J]. Angewandte Chemie International Edition, 2019, 58 (15): 4968- 4972.
doi: 10.1002/anie.201814640
|
34 |
Li J , Wang X , Zhao G , et al. Metal-organic framework-based materials:superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47 (7): 2322- 2356.
doi: 10.1039/C7CS00543A
|
35 |
Xu X Y , Chu C , Fu H , et al. Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole[J]. Chemical Engineering Journal, 2018, 350, 436444.
URL
|
36 |
Xu X Y , Zhang J , Zhao X , et al. Visible-light-triggered release of sulfonamides in MOF/Ag-based nanoparticle composites:Performance, mechanism, and DFT calculations[J]. ACS Applied Nano Materials, 2018, 2 (1): 418- 428.
|
37 |
Li X , Xu P , Chen M , et al. Application of silver phosphate-based photocatalysts:Barriers and solutions[J]. Chemical Engineering Journal, 2019, 366, 339- 357.
doi: 10.1016/j.cej.2019.02.083
|
38 |
Luo H , Zeng Z , Zeng G , et al. Recent progress on metal-organic frameworks basedand derived-photocatalysts for water splitting[J]. Chemical Engineering Journal, 2020, 383, 123196.
doi: 10.1016/j.cej.2019.123196
|
39 |
Wang C C , Zhang Y Q , Li J , et al. Photocatalytic CO2 reduction in metal-organic frameworks:A mini review[J]. Journal of Molecular Structure, 2015, 1083, 127- 136.
doi: 10.1016/j.molstruc.2014.11.036
|
40 |
Wang C C , Li J R , Lv X L , et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy Environmental Science, 2014, 7 (9): 2831- 2867.
doi: 10.1039/C4EE01299B
|
41 |
Wang C C , Du X D , Li J , et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks:A mini-review[J]. Applied Catalysis B: Environmental, 2016, 193, 198- 216.
doi: 10.1016/j.apcatb.2016.04.030
|
42 |
Wang Q , Gao Q , Al-Enizi A M , et al. Recent advances in MOF-based photocatalysis:Environmental remediation under visible light[J]. Inorganic Chemistry Frontiers, 2020, 7 (2): 300- 339.
doi: 10.1039/C9QI01120J
|
43 |
Liang X , Chen L , Zhang L , et al. Applications of metal-organic frameworks in photocatalysis[J]. Chinese Science Bulletin, 2018, 63 (3): 248- 265.
doi: 10.1360/N972017-00949
|
44 |
Alvaro M , Carbonell E , Ferrer B , et al. Semiconductor behavior of a metal-organic framework(MOF)[J]. Chemistry:A European Journal, 2007, 13 (18): 5106- 5112.
doi: 10.1002/chem.200601003
|
45 |
Wang D , Jia F , Wang H , et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519, 273- 284.
doi: 10.1016/j.jcis.2018.02.067
|
46 |
Jing H P , Wang C C , Zhang Y W , et al. Photocatalytic degradation of methylene blue in ZIF-8[J]. RSC Advances, 2014, 4 (97): 5445454462.
URL
|
47 |
Wang F X , Yi X H , Wang C C , et al. Photocatalytic Cr(Ⅵ) reduction and organic-pollutant degradation in a stable 2D coordination polymer[J]. Chinese Journal of Catalysis, 2017, 38 (12): 2141- 2149.
doi: 10.1016/S1872-2067(17)62947-4
|
48 |
Yi X H , Wang F X , Du X D , et al. Facile fabrication of BUC-21/gC3N4 composites and their enhanced photocatalytic Cr(Ⅵ) reduction performances under simulated sunlight[J]. Applied Organometallic Chemistry, 2019, 33 (1): e4621.
doi: 10.1002/aoc.4621
|
49 |
Zhao C , Wang Z , Li X , et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(Ⅵ) reduction under white light[J]. Chemical Engineering Journal, 2020, 389, 123431.
doi: 10.1016/j.cej.2019.123431
|
50 |
Wang X , Li Y X , Yi X H , et al. Photocatalytic Cr(Ⅵ) elimination over BUC-21/N-K2Ti4O9 composites:Big difference in performances resulting from small difference in composition[J]. Chinese Journal of Catalysis, 2020.
|
51 |
Wei X , Wang P , Fu H , et al. Boosted photocatalytic elimination toward Cr(Ⅵ) and organic pollutants over BUC-21/Cd0.5Zn0.5S under LED visible Light[J]. Materials Research Bulletin, 2020, 129, 110903.
doi: 10.1016/j.materresbull.2020.110903
|
52 |
Chen D D , Yi X H , Zhao C , et al. Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr(Ⅵ) reduction and tetracycline degradation under white light[J]. Chemosphere, 2020, 245, 125659.
doi: 10.1016/j.chemosphere.2019.125659
|
53 |
Wang X , Liu W , Fu H , et al. Simultaneous Cr(Ⅵ) reduction and Cr(Ⅲ) removal of bifunctional MOF/Titanate nanotube composites[J]. Environmental Pollution, 2019, 249, 502- 511.
doi: 10.1016/j.envpol.2019.03.096
|
54 |
Du X D , Yi X H , Wang P , et al. Robust photocatalytic reduction of Cr(Ⅵ) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation[J]. Chemical Engineering Journal, 2019, 356, 393- 399.
doi: 10.1016/j.cej.2018.09.084
|
55 |
Yi X H , Ma S Q , Du X D , et al. The facile fabrication of 2D/3D Zscheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(Ⅵ) reduction performance under white light[J]. Chemical Engineering Journal, 2019, 375, 121944.
doi: 10.1016/j.cej.2019.121944
|
56 |
Zhou Y C , Xu X Y , Wang P , et al. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/ Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40 (12): 1912- 1923.
doi: 10.1016/S1872-2067(19)63433-9
|
57 |
Li Y X , Wang X , Wang C C , et al. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(Ⅵ) reduction and bisphenol A degradation under LED visible light[J]. Journal of Hazardous Materials, 2020, 399, 123085.
doi: 10.1016/j.jhazmat.2020.123085
|
58 |
Wang C , Kim J , Malgras V , et al. Metal-organic frameworks and their derived materials:Emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification[J]. Small, 2019, 15 (16): 1900744.
doi: 10.1002/smll.201900744
|
59 |
Gao C , Chen S , Quan X , et al. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants[J]. Journal of Catalysis, 2017, 356, 125- 132.
doi: 10.1016/j.jcat.2017.09.015
|
60 |
Gao Y , Yu G , Liu K , et al. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework[J]. Chemical Engineering Journal, 2017, 330, 157- 165.
doi: 10.1016/j.cej.2017.06.139
|
61 |
Fu H , Song X X , Wu L , et al. Room-temperature preparation of MIL88A as a heterogeneous photo-Fenton catalyst for degradation of rhodamine B and bisphenol A under visible light[J]. Materials Research Bulletin, 2020, 125, 110806.
doi: 10.1016/j.materresbull.2020.110806
|
62 |
Cheng M , Lai C , Liu Y , et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis[J]. Coordination Chemistry Reviews, 2018, 368, 80- 92.
doi: 10.1016/j.ccr.2018.04.012
|
63 |
Du X , Yi X , Wang P , et al. Enhanced photocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions[J]. Chinese Journal of Catalysis, 2019, 40 (1): 70- 79.
doi: 10.1016/S1872-2067(18)63160-2
|
64 |
Chen D D , Yi X , Ling L , et al. Photocatalytic Cr(Ⅵ) sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A(Fe)[J]. Applied Organometallic Chemistry, 2020.
|
65 |
Lin K Y A , Chang H A . Zeolitic Imidazole Framework-67(ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 40- 45.
doi: 10.1016/j.jtice.2015.02.027
|
66 |
Gao Y , Li S , Li Y , et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202, 165- 174.
doi: 10.1016/j.apcatb.2016.09.005
|
67 |
Sharma V K , Feng M . Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes:A review[J]. Journal of hazardous materials, 2019, 372, 3- 16.
doi: 10.1016/j.jhazmat.2017.09.043
|
68 |
Wyszogrodzka G , Marsza?ek B , Gil B , et al. Metal-organic frameworks:mechanisms of antibacterial action and potential applications[J]. Drug Discovery Today, 2016, 21 (6): 1009- 1018.
doi: 10.1016/j.drudis.2016.04.009
|
69 |
Nomiya K , Tsuda K , Sudoh T , et al. Ag(Ⅰ)N bond-containing compound showing wide spectra in effective antimicrobial activities: Polymeric silver(Ⅰ) imidazolate[J]. Journal of Inorganic Biochemistry, 1997, 68 (1): 39- 44.
doi: 10.1016/S0162-0134(97)00006-8
|
70 |
Liu A , Wang C C , Wang C , et al. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers[J]. Journal of Colloid and Interface Science, 2018, 512, 730- 739.
doi: 10.1016/j.jcis.2017.10.099
|
71 |
Liu A , Wang C Z , Chu C , et al. Adsorption performance toward organic pollutants, odour control and anti-microbial activities of one Ag-based coordination polymer[J]. Journal of Environmental Chemical Engineering, 2018, 6 (4): 4961- 4969.
doi: 10.1016/j.jece.2018.07.035
|