1 |
Rusch M , Spielmeyer A , Zorn H , et al. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin[J]. Applied Microbiology and Biotechnology, 2019, 103 (17): 6933- 6948.
doi: 10.1007/s00253-019-10017-8
|
2 |
张君, 封丽, 田隽, 等. 氟喹诺酮类在环境中的分布及去除研究进展[J]. 环境科学与技术, 2019, 42 (S1): 77- 84.
URL
|
3 |
Reis A C , Kolvenbach B A , Nunesb O C , et al. Biodegradation of antibiotics: The new resistance determinants-part Ⅱ[J]. New Biotechnology, 2020, 54, 13- 27.
doi: 10.1016/j.nbt.2019.08.003
|
4 |
Chen Haiyang , Jing Lijun , Teng Yanguo , et al. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 2018, 618, 409- 418.
doi: 10.1016/j.scitotenv.2017.11.054
|
5 |
赵青青, 高睿, 王铭璐. 药物和个人护理品(PPCPs)去除技术研究进展[J]. 环境科学与技术, 2016, 39 (S1): 119- 125.
URL
|
6 |
刘鹏霄. 城市污水处理厂中痕量抗生素的归趋及其减排技术研究[D]. 大连: 大连理工大学, 2014.
|
7 |
Bilal M , Mehmood S , Rasheed T , et al. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact[J]. Current Opinion in Environmental Science & Health, 2020, 13, 68- 74.
URL
|
8 |
李辉, 陈瑀, 封梦娟, 等. 南京市饮用水源地抗生素污染特征及风险评估[J]. 环境科学学报, 2020, 40 (4): 1269- 1277.
URL
|
9 |
廖杰, 魏晓琴, 肖燕琴, 等. 莲花水库水体中抗生素污染特征及生态风险评价[J]. 环境科学, 2020, 41 (9): 205- 211.
URL
|
10 |
李威, 李佳熙, 李吉平, 等. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44 (1): 205- 214.
URL
|
11 |
Liu Xiaohui , Lu Shaoyong , Guo Wei , et al. Antibiotics in the aquatic environments: A review of lakes, China[J]. Science of the Total Environment, 2018, 627, 1195- 1208.
doi: 10.1016/j.scitotenv.2018.01.271
|
12 |
Zhang Guodong , Lu Shaoyong , Wang Yongqiang , et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environ. Pollut., 2020, 257, 113365.
doi: 10.1016/j.envpol.2019.113365
|
13 |
莫苑敏, 黄亮亮, 王倩, 等. 广西青狮潭水库水体喹诺酮类抗生素的分布特征及生态风险评价[J]. 湖泊科学, 2019, 31 (1): 124- 133.
URL
|
14 |
刘晓晖, 卢少勇. 大通湖表层水体中抗生素赋存特征与风险[J]. 中国环境科学, 2018, 38 (1): 320- 329.
doi: 10.3969/j.issn.1000-6923.2018.01.036
|
15 |
张晓娇, 柏杨巍, 张远, 等. 辽河流域地表水中典型抗生素污染特征及生态风险评估[J]. 环境科学, 2017, 38 (11): 4553- 4561.
URL
|
16 |
李嘉, 张瑞杰, 王润梅, 等. 小清河流域抗生素污染分布特征与生态风险评估[J]. 农业环境科学学报, 2016, 35 (7): 1384- 1391.
URL
|
17 |
杨俊, 王汉欣, 吴韵斐, 等. 苏州市水环境中典型抗生素污染特征及生态风险评估[J]. 生态环境学报, 2019, 28 (2): 359- 368.
URL
|
18 |
Tang Jun , Shi Taozhong , Wu Xiangwei , et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122, 154- 161.
doi: 10.1016/j.chemosphere.2014.11.032
|
19 |
Nkoom M , Lu G H , Liu J C . Occurrence and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake, China: a review[J]. Environmental Science-Processes & Impacts, 2018, 20 (12): 1640- 1648.
URL
|
20 |
Jiang Yonghai , Li Mingxiao , Guo Changsheng , et al. Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in north China[J]. Chemosphere, 2014, 112, 267- 274.
doi: 10.1016/j.chemosphere.2014.04.075
|
21 |
邵一如, 席北斗, 曹金玲, 等. 抗生素在城市污水处理系统中的分布及去除[J]. 环境科学与技术, 2013, 36 (7): 85- 92.
doi: 10.3969/j.issn.1003-6504.2013.07.017
|
22 |
方昊, 余军楠, 王智峰, 等. 江苏典型中华绒螯蟹养殖区抗生素污染特征与生态风险评估[J]. 生态与农村环境学报, 2019, 35 (11): 1436- 1444.
URL
|
23 |
余军楠, 方昊, 胡建林, 等. 江苏四个典型克氏原螯虾养殖区抗生素污染特征与生态风险评估[J]. 农业环境科学学报, 2020, 39 (2): 386- 393.
URL
|
24 |
梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22 (2): 304- 310.
doi: 10.3969/j.issn.1674-5906.2013.02.022
|
25 |
Li Xiaohua , Liu Chong , Chen Yongxing , et al. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China[J]. Environ. Sci. Pollut. Res.Int., 2018, 25 (12): 11565- 11575.
doi: 10.1007/s11356-018-1339-1
|
26 |
Chen Guoli , Liu Xiang , Tartakevosky D , et al. Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system[J]. Ecotoxicol. Environ. Saf., 2016, 133, 18- 24.
doi: 10.1016/j.ecoenv.2016.05.030
|
27 |
张杏艳, 陈中华, 邓海明. 水环境中四环素类抗生素降解及去除研究进展[J]. 生态毒理学报, 2016, 11 (6): 44- 52.
URL
|
28 |
Zhang Lulu , Shen Lina , Qin Shan , et al. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations(PNECs) and ecological risks by three methods[J]. Environ. Pollut., 2019, 256, 113458.
URL
|
29 |
Zhu Yongguan , Gillings M R , Simonet P , et al. Microbial mass movements[J]. Science, 2017, 357 (6356): 1099- 1100.
doi: 10.1126/science.aao3007
|
30 |
田其凡, 何玘霜, 陆安祥, 等. 农田土壤抗生素抗性基因与微生物群落的关系[J]. 环境化学, 2020, 39 (5): 192- 201.
URL
|
31 |
Zhang Yongpeng , Li Wenpeng . Blending antibiotic resistance into environmental risk assessment of antibiotics: A case study in coastal waters of the Bohai Bay, China[J]. Human and Ecological Risk Assessment, 2019, 25 (6): 1- 16.
URL
|
32 |
季秋洁. 3种氟喹诺酮类抗生素在猪粪中的残留与降解[D]. 合肥: 安徽农业大学, 2012.
|
33 |
肖秋美, 王建武, 唐艺玲. 土壤-蔬菜系统中环丙沙星的降解与生物累积特征[J]. 应用生态学报, 2012, 23 (10): 2708- 2714.
URL
|
34 |
孟磊, 杨兵, 薛南冬, 等. 高温堆肥对鸡粪中氟喹诺酮类抗生素的去除[J]. 农业环境科学学报, 2015, 34 (2): 377- 383.
URL
|
35 |
陈琼. 两种喹诺酮类抗生素水环境行为的初步研究[D]. 南昌: 南昌工程学院, 2018.
|
36 |
黄宏, 李圆杏, 杨红伟. 水环境中抗生素的光降解研究进展[J]. 环境化学, 2013, 32 (7): 1335- 1341.
URL
|
37 |
东天, 马溪平, 王闻烨, 等. 抗生素光降解研究进展[J]. 环境科学与技术, 2014, 37 (S1): 108- 113.
URL
|
38 |
Gao Nan , Liu Chunxiao , Xu Qiuman , et al. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus[J]. Chemosphere, 2018, 195, 146- 155.
doi: 10.1016/j.chemosphere.2017.12.062
|
39 |
Babic S , Perisa M , Skoric I . Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media[J]. Chemosphere, 2013, 91 (11): 1635- 1642.
doi: 10.1016/j.chemosphere.2012.12.072
|
40 |
Wang Jianlong , Zhuan Run , Chu Libing . The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview[J]. Sci. Total Environ., 2019, 646, 1385- 1397.
doi: 10.1016/j.scitotenv.2018.07.415
|
41 |
Wang Yunting , Xue Yudong , Zhang Chunhui . Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance[J]. Sci. Total Environ., 2020, 712, 136501.
doi: 10.1016/j.scitotenv.2020.136501
|
42 |
Feng Naixian , Yu Jiao , Zhao Haiming , et al. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships[J]. Science of the Total Environment, 2017, 583, 352- 368.
doi: 10.1016/j.scitotenv.2017.01.075
|
43 |
Huang Xianpei , Mo Cehui , Yu Jiao , et al. Variations in microbial community and ciprofloxacin removal in rhizospheric soils between two cultivars of Brassica parachinensis L[J]. Science of the Total Environment, 2017, 603/604, 66- 76.
doi: 10.1016/j.scitotenv.2017.06.040
|
44 |
Sturini M , Speltini A , Maraschi F , et al. Environmental photochemistry of fluoroquinolones in soil and in aqueous soil suspensions under solar light[J]. Environmental Science And Pollution Research, 2014, 21 (23): 13215- 13221.
doi: 10.1007/s11356-013-2124-9
|
45 |
Amorim C L , Moreira I S , Maia A S , et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Appl. Microbiol. Biotechnol., 2014, 98 (7): 3181- 3190.
doi: 10.1007/s00253-013-5333-8
|
46 |
Van Doorslaer X , Heynderickx P M , Demeestere K , et al. TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study[J]. Applied Catalysis B: Environmental, 2012, 111/112, 150- 156.
doi: 10.1016/j.apcatb.2011.09.029
|
47 |
Razuc M , Garrido M , Caro Y S , et al. Hybrid hard- and soft-modeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 106, 146- 154.
doi: 10.1016/j.saa.2012.12.085
|
48 |
彭澍晗, 吴德礼. 催化臭氧氧化深度处理工业废水的研究及应用[J]. 工业水处理, 2019, 39 (1): 1- 7.
URL
|
49 |
Watkinson A J , Murby E J , Costanzo S D . Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling[J]. Water Res., 2017, 41 (18): 4164- 4176.
URL
|
50 |
王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展[J]. 四川师范大学学报(自然科学版), 2020, 43 (2): 143- 172.
doi: 10.3969/j.issn.1001-8395.2020.02.001
|
51 |
Zhu Lingli , Ji Jiahui , Liu Jun , et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J]. Angewandte Chemie, 2020, 59 (33): 13968- 13976.
doi: 10.1002/anie.202006059
|
52 |
Liyanage G Y , Manage P M . Removal of Ciprofloxacin(CIP) by bacteria isolated from hospital effluent water and identification of degradation pathways[J]. International Journal of Medical, Pharmacy and Drug Research, 2018, 2 (3): 37- 47.
doi: 10.22161/ijmpd.2.3.1
|
53 |
Nguyen L N , Nghiem L D , Oh S . Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge[J]. Chemosphere, 2018, 211, 600- 607.
doi: 10.1016/j.chemosphere.2018.08.004
|
54 |
Maia A S , Tiritan M E , Castro P M L . Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1[J]. Ecotoxicol. Environ. Saf., 2018, 155, 144- 151.
doi: 10.1016/j.ecoenv.2018.02.067
|
55 |
刘元望, 李兆君, 冯瑶, 等. 微生物降解抗生素的研究进展[J]. 农业环境科学学报, 2016, 35 (2): 212- 224.
URL
|
56 |
Parshikov I A , Khasaeva F M . Fungal transformation of ofloxacin and enrofloxacin[J]. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 2018, 20 (2): 368- 371.
URL
|
57 |
Rusch M , Kauschat A , Spielmeyer A , et al. Biotransformation of the antibiotic danofloxacin by xylaria longipes leads to an efficient reduction of its antibacterial activity[J]. J. Agric. Food. Chem., 2015, 63 (31): 6897- 6904.
doi: 10.1021/acs.jafc.5b02343
|
58 |
Kuemmerer K . Antibiotics in the aquatic environment-A review-Part Ⅱ[J]. Chemosphere, 2009, 75 (4): 435- 441.
doi: 10.1016/j.chemosphere.2008.12.006
|
59 |
Prieto A , Moder M , Rodil R , et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresour. Technol., 2011, 102 (23): 10987- 10995.
doi: 10.1016/j.biortech.2011.08.055
|
60 |
Ding Yanli , Lyu T , Bai Shaoyuan , et al. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: Assessment of treatment performance, biofilm development, and solids accumulation[J]. Environ. Sci. Pollut. Res. Int., 2018, 25 (2): 1883- 1891.
doi: 10.1007/s11356-017-0636-4
|
61 |
Wang Xiaoou , Tian Yimei , Liu Hong , et al. Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems[J]. Sci. Total Environ., 2019, 653, 860- 871.
doi: 10.1016/j.scitotenv.2018.11.005
|
62 |
Radjenovic J , Petrovic M , Barceló D . Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge(CAS) and advanced membrane bioreactor(MBR) treatment[J]. Water Res., 2009, 43 (3): 831- 841.
doi: 10.1016/j.watres.2008.11.043
|
63 |
Jia Ai , Wan Yi , Xiao Yang , et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant[J]. Water Res., 2012, 46 (2): 387- 394.
doi: 10.1016/j.watres.2011.10.055
|
64 |
Dutta K , Lee M Y , Lai W W , et al. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor[J]. Bioresour. Technol., 2014, 165, 42- 49.
doi: 10.1016/j.biortech.2014.03.054
|
65 |
Zuccato E , Castiglioni S , Bagnati R , et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment[J]. Journal of Hazardous Materials, 2010, 179 (1/2/3): 1042- 1048.
URL
|
66 |
柴玉峰, 张玉秀, 陈梅雪, 等. 冀西北典型北方小城镇污水处理厂中抗生素的分布和去除[J]. 环境科学, 2018, 39 (6): 2724- 2731.
URL
|
67 |
李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019, 42 (3): 17- 29.
URL
|
68 |
Xu Weihai , Zhang Gan , Li Xiangdong , et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta(PRD), South China[J]. Water Res., 2007, 41 (19): 4526- 4534.
doi: 10.1016/j.watres.2007.06.023
|
69 |
王肖. 复合MBR除强化去除污水中残留抗生素的效果研究[D]. 南京: 东南大学, 2015.
|