1 |
赵菁, 张改, 马爱洁, 等. 高级氧化法处理模拟印染废水的研究[J]. 工业水处理, 2015, 35 (3): 37- 39.
URL
|
2 |
徐宇峰. 活性炭处理工业废水的应用[J]. 环境与发展, 2018, 30 (3): 38- 40.
URL
|
3 |
尹奇异, 杨蕾, 刘文方, 等. 窄带半导体敏化TiO2光催化材料的制备及性能研究[J]. 广东化工, 2020, 47 (6): 25- 26.
doi: 10.3969/j.issn.1007-1865.2020.06.012
|
4 |
Ngoduc T , Singh K , Meyyappan M , et al. Vertical ZnO nanowire growth on metal substrates[J]. Nanotechnology, 2012, 23 (19): 194015.
doi: 10.1088/0957-4484/23/19/194015
|
5 |
Aleman B , Fernandez P , Piqueras J . Indium-zinc-oxide nanobelts with superlattice structure[J]. Applied Physics Letters, 2009, 95 (1): 013111.
doi: 10.1063/1.3176974
|
6 |
黄文艺, 王崇罡, 吕晓威, 等. 基于温度调控制备花状纳米氧化锌及其光催化性能[J]. 无机盐工业, 2018, 50 (9): 72- 75.
URL
|
7 |
Lu Hongxia , Zhao Yunlong , Yu Xiujun , et al. Controllable synthesis of spindle-like ZnO nanostructures by a simple low-temperature aqueous solution route[J]. Applied Surface Science, 2011, 257 (9): 4519- 4523.
doi: 10.1016/j.apsusc.2010.12.115
|
8 |
王丽娟, 李晓宁, 陈爱武, 等. 纳米ZnO的制备及其光催化降解印染废水[J]. 深圳大学学报(理工版), 2019, 36 (4): 367- 374.
URL
|
9 |
枚伟. 花状纳米氧化锌结构的改性及其光催化性能研究[D]. 长沙: 长沙理工大学, 2019.
|
10 |
樊彬, 杨雯, 宫淼淼. 水热法制备花状纳米氧化锌[J]. 中国陶瓷, 2016, 52 (7): 34- 38.
URL
|
11 |
陈沾, 朱雷, 汪恂. 氧化锌纳米材料的制备及其光催化性能[J]. 环境工程学报, 2016, 10 (8): 4104- 4108.
URL
|
12 |
Hayat K , Gondal M A , Khaled M M , et al. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water[J]. Applied Catalysis A General, 2011, 393 (1/2): 122- 129.
URL
|
13 |
余花娃, 王晶, 夏蔡娟, 等. CTAB辅助水热合成花状氧化锌及其光催化性能[J]. 纺织高校基础科学学报, 2017, 30 (4): 541- 546.
URL
|
14 |
Xie Juan , Li Ping , Wang Yanji , et al. Synthesis of needleand flower-like ZnO microstructures by a simple aqueous solution route[J]. Journal of Physics & Chemistry of Solids, 2009, 70 (1): 112- 116.
URL
|
15 |
Ashoka S , Nagaraju G , Tharamani C N , et al. Ethylene glycol assisted hydrothermal synthesis of flower like ZnO architectures[J]. Materials Letters, 2009, 63 (11): 873- 876.
doi: 10.1016/j.matlet.2009.01.054
|
16 |
熊裕华, 李凤仪, 朱志怀, 等. Fe3+/TiO2光催化剂降解孔雀绿染料的研究[J]. 水处理技术, 2005, 31 (2): 21- 25.
doi: 10.3969/j.issn.1000-3770.2005.02.017
|
17 |
沈文浩, 刘天龙, 李翠翠, 等. TiO2胶体光催化降解罗丹明B染料[J]. 环境工程学报, 2012, 6 (6): 1863- 1870.
URL
|
18 |
Lu C S , Wu Y T , Mai F , et al. Degradation efficiencies and mechanisms of the ZnO-mediated photocatalytic degradation of Basic Blue 11 under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2009, 310 (1/2): 159- 165.
URL
|
19 |
张跃, 康卓, 闫小琴, 等. 纳米氧化锌基酶生物传感器(英文)[J]. Science China Materials, 2015, 58 (1): 60- 76.
URL
|
20 |
Rao A N , Sivasankar B , Sadasivam V . Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst[J]. Journal of Hazardous Materials, 2009, 166 (2/3): 1357.
URL
|
21 |
Muruganandham M , Swaminathan M . TiO2-UV photocatalytic oxidation of Reactive Yellow 14:Effect of operational parameters[J]. Journal of Hazardous Materials, 2006, 135 (1/2/3): 78- 86.
URL
|
22 |
Rajamanickam D , Shanthi M . Photocatalytic degradation of an organic pollutant by zinc oxide-solar process[J]. Arabian Journal of Chemistry, 2012, 9 (3): 1858- 1868.
URL
|
23 |
Behnajady M A , Modirshahla N , Hamzavi R . Kinetic study on photocatalytic degradation of C. I. Acid Yellow 23 by ZnO photocatalyst[J]. Journal of Hazardous Materials, 2006, 133 (1): 226- 232.
|
24 |
Miray B , Isil B . Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion[J]. Water Sci. Technol, 1996, 34 (9): 73- 80.
doi: 10.2166/wst.1996.0180
|