1 |
张庆民. 石油和化学工业环保废水的处理工艺[J]. 化工管理,2020(36):149-150. doi:10.3969/j.issn.1008-4800.2020.36.071
|
|
ZHANG Qingmin. Treatment technology of environmental protection wastewater from petroleum and chemical industries[J]. Chemical Enterprise Management,2020(36):149-150. doi:10.3969/j.issn.1008-4800.2020.36.071
|
2 |
WU Chongchong, DE VISSCHER A, GATES I D. On naphthenic acids removal from crude oil and oil sands process-affected water[J]. Fuel,2019,253:1229-1246. doi:10.1016/j.fuel.2019.05.091
|
3 |
YE Huangfan, LIU Baodong, WANG Qinghong,et al. Comprehensive chemical analysis and characterization of heavy oil electric desalting wastewaters in petroleum refineries[J]. Science of the Total Environment,2020,724:138117. doi:10.1016/j.scitotenv.2020.138117
|
4 |
SAMANIPOUR S, REID M J, RUNDBERGET J T,et al. Concentration and distribution of naphthenic acids in the produced water from offshore Norwegian north sea oilfields[J]. Environmental Science & Technology,2020,54(5):2707-2714. doi:10.1021/acs.est.9b05784
|
5 |
PINZÓN-ESPINOSA A, KANDA R. Naphthenic acids are key contributors to toxicity of heavy oil refining effluents[J]. Science of the Total Environment,2020,729:138119. doi:10.1016/j.scitotenv.2020.138119
|
6 |
LIU Juncheng, WANG Lin, TANG Jingchun,et al. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial[J]. Chemosphere,2016,149:328-335. doi:10.1016/j.chemosphere.2016.01.074
|
7 |
梁文杰,阙国和,刘晨光. 石油化学[M]. 2版. 东营:中国石油大学出版社,2009:48-53.
|
|
LIANG Wenjie, QUE Guohe, LIU Chenguang. Petroleum Chemistry[M]. 2nd ed. Dongying:China University of Petroleum Press,2009:48-53.
|
8 |
邢其毅,裴伟伟,徐瑞秋,等. 基础有机化学[M]. 4版. 北京:北京大学出版社,2017:519-520.
|
|
XING Qiyi, PEI Weiwei, XU Ruiqiu,et al. Basic Organic Chemistry[M]. 4th ed. Beijing:Peking University Press,2017:519-520.
|
9 |
张文勤,郑艳,马宁,等. 有机化学[M]. 5版. 北京:高等教育出版社,2014:415-416.
|
|
ZHANG Wenqin, ZHENG Yan, MA Ning,et al. Organic Chemistry[M]. 5th ed. Beijing:Higher Education Press,2014:415-416.
|
10 |
KIRK R E, OTHMER D F, GRAYSON M,et al. Encyclopedia of chemical technology[M]. 3rd ed. New York:Wiley,1980:1017-1029.
|
11 |
HOLOWENKO F M, MACKINNON M D, FEDORAK P M. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry[J]. Water Research,2002,36(11):2843-2855. doi:10.1016/s0043-1354(01)00492-4
|
12 |
BROWN L D, ULRICH A C. Oil sands naphthenic acids:A review of properties,measurement,and treatment[J]. Chemosphere,2015,127:276-290. doi:10.1016/j.chemosphere.2015.02.003
|
13 |
ZAFAR F, PARK J, KIM C H,et al. Contributions of acidic-basic sites on hybridized FER@g-C3N4 for liquid-phase decarboxylation of naphthenic acids[J]. Fuel,2021,296:120679. doi:10.1016/j.fuel.2021.120679
|
14 |
肖梓军,郝日诗,亓瑞倩,等. 环烷酸降解技术研究进展[J]. 长春理工大学学报:自然科学版,2010,33(2):94-98.
|
|
XIAO Zijun, HAO Rishi, QI Ruiqian,et al. Progresses of the degradation technology of naphthenic acids[J]. Journal of Changchun University of Science and Technology:Natural Science Edition,2010,33(2):94-98.
|
15 |
MESHREF M N A, IBRAHIM M D, HUANG Rongfu,et al. Fourier transform infrared spectroscopy as a surrogate tool for the quantification of naphthenic acids in oil sands process water and ground-water[J]. Science of the Total Environment,2020,734:139191. doi:10.1016/j.scitotenv.2020.139191
|
16 |
KLEMZ A C, DAMAS M S P, GONZÁLEZ S Y G,et al. The use of oilfield gaseous byproducts as extractants of recalcitrant naphthenic acids from synthetic produced water[J]. Separation and Purification Technology,2020,248:117123. doi:10.1016/j.seppur.2020.117123
|
17 |
SCOTT A C, YOUNG R F, FEDORAK P M. Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples[J]. Chemosphere,2008,73(8):1258-1264. doi:10.1016/j.chemosphere.2008.07.024
|
18 |
GUTIERREZ-VILLAGOMEZ J M, VÁZQUEZ-MARTÍNEZ J, RAMÍREZ-CHÁVEZ E,et al. Profiling low molecular weight organic compounds from naphthenic acids,acid extractable organic mixtures,and oil sands process-affected water by SPME-GC-EIMS[J]. Journal of Hazardous Materials,2020,390:122186. doi:10.1016/j.jhazmat.2020.122186
|
19 |
CLEMENTE J S, FEDORAK P M. A review of the occurrence,analyses,toxicity,and biodegradation of naphthenic acids[J]. Chemosphere,2005,60(5):585-600. doi:10.1016/j.chemosphere.2005.02.065
|
20 |
GREWER D M, YOUNG R F, WHITTAL R M,et al. Naphthenic acids and other acid-extractables in water samples from Alberta:What is being measured?[J]. Science of the Total Environment,2010,408(23):5997-6010. doi:10.1016/j.scitotenv.2010.08.013
|
21 |
HUANG Rongfu, CHEN Yuan, MESHREF M N A,et al. Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta,Canada[J]. Water Research,2018,128:129-137. doi:10.1016/j.watres.2017.10.003
|
22 |
WANG Chengjin, HUANG Rongfu, KLAMERTH N,et al. Positive and negative electrospray ionization analyses of the organic fractions in raw and oxidized oil sands process-affected water[J]. Chemosphere,2016,165:239-247. doi:10.1016/j.chemosphere.2016.09.009
|
23 |
HUANG Rongfu, MCPHEDRAN K N, GAMAL EL-DIN M. Ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry characterization of naphthenic acids species from oil sands process-affected water[J]. Environmental Science & Technology,2015,49(19):11737-11745. doi:10.1021/acs.est.5b03178
|
24 |
HUGHES S A, HUANG Rongfu, MAHAFFEY A,et al. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples[J]. Chemosphere,2017,187:376-384. doi:10.1016/j.chemosphere.2017.08.123
|
25 |
FANG Zhi, HUANG Rongfu, CHELME-AYALA P,et al. Comparison of UV/Persulfate and UV/H2O2 for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water[J]. Science of the Total Environment,2019,694:133686. doi:10.1016/j.scitotenv.2019.133686
|
26 |
杨敬一,何萧,蔡海军,等. 风城稠油中石油酸组成结构分析[J]. 石油炼制与化工,2017,48(2):106-112. doi:10.3969/j.issn.1005-2399.2017.02.020
|
|
YANG Jingyi, HE Xiao, CAI Haijun,et al. Compositions and structures of petroleum acids in Fengcheng heavy crude[J]. Petroleum Processing and Petrochemicals,2017,48(2):106-112. doi:10.3969/j.issn.1005-2399.2017.02.020
|
27 |
ARSHAD M, KHOSA M A, SIDDIQUE T,et al. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water(OSPW)[J]. Chemosphere,2016,163:334-341. doi:10.1016/j.chemosphere.2016.08.015
|
28 |
REICHERT M, BLUNT B, GABRUCH T,et al. Sensory and behavioral responses of a model fish to oil sands process-affected water with and without treatment[J]. Environmental Science & Technology,2017,51(12):7128-7137. doi:10.1021/acs.est.7b01650
|
29 |
PINZÓN-ESPINOSA A, COLLINS T J, KANDA R. Detoxification of oil refining effluents by oxidation of naphthenic acids using TAML catalysts[J]. Science of the Total Environment,2021,784:147148. doi:10.1016/j.scitotenv.2021.147148
|
30 |
WANG Nan, CHELME-AYALA P, PEREZ-ESTRADA L,et al. Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to Vibrio fischeri and mammalian immune system[J]. Environmental Science & Technology,2013,47(12):6518-6526. doi:10.1021/es4008195
|
31 |
LI Chao, FU Li, STAFFORD J,et al. The toxicity of oil sands process-affected water(OSPW):A critical review[J]. Science of the Total Environment,2017,601:1785-1802. doi:10.1016/j.scitotenv.2017.06.024
|
32 |
MESHREF M N A, CHELME-AYALA P, GAMAL EL-DIN M. Fate and abundance of classical and heteroatomic naphthenic acid species after advanced oxidation processes:Insights and indicators of transformation and degradation[J]. Water Research,2017,125:62-71. doi:10.1016/j.watres.2017.08.007
|
33 |
MARENTETTE J R, FRANK R A, BARTLETT A J,et al. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters,and commercial naphthenic acid mixtures,to fathead minnow(Pimephales promelas) embryos[J]. Aquatic Toxicology,2015,164:108-117. doi:10.1016/j.aquatox.2015.04.024
|
34 |
BARTLETT A J, FRANK R A, GILLIS P L,et al. Toxicity of naphthenic acids to invertebrates:Extracts from oil sands process-affected water versus commercial mixtures[J]. Environmental Pollution,2017,227:271-279. doi:10.1016/j.envpol.2017.04.056
|
35 |
SAMANIPOUR S, HOOSHYARI M, BAZ-LOMBA J A,et al. The effect of extraction methodology on the recovery and distribution of naphthenic acids of oilfield produced water[J]. Science of the Total Environment,2019,652:1416-1423. doi:10.1016/j.scitotenv.2018.10.264
|
36 |
HUANG Rongfu, MCPHEDRAN K N, SUN Nian,et al. Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water[J]. Chemosphere,2016,146:472-477. doi:10.1016/j.chemosphere.2015.12.054
|
37 |
QIN Rui, LILLICO D, HOW Z T,et al. Separation of oil sands process water organics and inorganics and examination of their acute toxicity using standard in-vitro bioassays[J]. Science of the Total Environment,2019,695:133532. doi:10.1016/j.scitotenv.2019.07.338
|
38 |
POURREZAEI P, DRZEWICZ P, WANG Yingnan,et al. The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water[J]. Environmental Science & Technology,2011,45(19):8452-8459. doi:10.1021/es201498v
|
39 |
YE Huangfan, CHEN Lin, KOU Yue,et al. Influences of coagulation pretreatment on the characteristics of crude oil electric desalting wastewaters[J]. Chemosphere,2021,264:128531. doi:10.1016/j.chemosphere.2020.128531
|
40 |
WAN Jing, CHAKRABORTY T, XU Chunbao,et al. Treatment train for tailings pond water using Opuntia ficus-indica as coagulant[J]. Separation and Purification Technology,2019,211:448-455. doi:10.1016/j.seppur.2018.09.083
|
41 |
WANG Chengjin, ALPATOVA A, MCPHEDRAN K N,et al. Coagulation/flocculation process with polyaluminum chloride for the remediation of oil sands process-affected water:Performance and mechanism study[J]. Journal of Environmental Management,2015,160:254-262. doi:10.1016/j.jenvman.2015.06.025
|
42 |
NIASAR H S,DAS S, XU C,et al. Continuous column adsorption of naphthenic acids from synthetic and real oil sands process-affected water(OSPW) using carbon-based adsorbents[J]. Chemosphere,2019,214:511-518. doi:10.1016/j.chemosphere.2018.09.078
|
43 |
ZUBOT W, MACKINNON M D, CHELME-AYALA P,et al. Petroleum coke adsorption as a water management option for oil sands process-affected water[J]. Science of the Total Environment,2012,427:364-372. doi:10.1016/j.scitotenv.2012.04.024
|
44 |
IRANMANESH S, HARDING T, ABEDI J,et al. Adsorption of naphthenic acids on high surface area activated carbons[J]. Journal of Environmental Science and Health. Part A,Toxic/Hazardous Substances & Environmental Engineering,2014,49(8):913-922. doi:10.1080/10934529.2014.894790
|
45 |
SINGH R, NAIK D V, DUTTA R K,et al. Biochars for the removal of naphthenic acids from water:A prospective approach towards remediation of petroleum refinery wastewater[J]. Journal of Cleaner Production,2020,266:121986. doi:10.1016/j.jclepro.2020.121986
|
46 |
WU Lin, LI Binghua, LIU Mingzhu. Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars[J]. Chemosphere,2018,210:239-246. doi:10.1016/j.chemosphere.2018.07.003
|
47 |
BHUIYAN T I, TAK J K, SESSAREGO S,et al. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar:Metal content matters[J]. Chemosphere,2017,168:1337-1344. doi:10.1016/j.chemosphere.2016.11.126
|
48 |
AZAD F S, ABEDI J, IRANMANESH S. Removal of naphthenic acids using adsorption process and the effect of the addition of salt[J]. Journal of Environmental Science and Health. Part A,Toxic/Hazardous Substances & Environmental Engineering,2013,48(13):1649-1654. doi:10.1080/10934529.2013.815457
|
49 |
NIASAR H S, LI Hanning, KASANNENI T V R,et al. Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water(OSPW)[J]. Chemical Engineering Journal,2016,293:189-199. doi:10.1016/j.cej.2016.02.062
|
50 |
GAMAL EL-DIN M, FU Hongjing, WANG Nan,et al. Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water[J]. Science of the Total Environment,2011,409(23):5119-5125. doi:10.1016/j.scitotenv.2011.08.033
|
51 |
HENDGES L T, COSTA T C, TEMOCHKO B,et al. Adsorption and desorption of water-soluble naphthenic acid in simulated offshore oilfield produced water[J]. Process Safety and Environmental Protection,2021,145:262-272. doi:10.1016/j.psep.2020.08.018
|
52 |
HUANG Rongfu, SUN Nian, CHELME-AYALA P,et al. Fractionation of oil sands process-affected water using pH-dependent extractions:A study of dissociation constants for naphthenic acids species[J]. Chemosphere,2015,127:291-296. doi:10.1016/j.chemosphere.2014.11.041
|
53 |
张凯,刘君成,唐景春,等. 高级氧化技术降解环烷酸的研究进展[J]. 化工环保,2014,34(5):429-433. doi:10.3969/j.issn.1006-1878.2014.05.006
|
|
ZHANG Kai, LIU Juncheng, TANG Jingchun,et al. Research progresses in degredation of naphthenic acids by advanced oxidation technology[J]. Environmental Protection of Chemical Industry,2014,34(5):429-433. doi:10.3969/j.issn.1006-1878.2014.05.006
|
54 |
ZHANG Lei, ZHANG Yanyan, GAMAL EL-DIN M. Integrated mild ozonation with biofiltration can effectively enhance the removal of naphthenic acids from hydrocarbon-contaminated water[J]. The Science of the Total Environment,2019,678:197-206. doi:10.1016/j.scitotenv.2019.04.302
|
55 |
ZHANG Yanyan, XUE Jinkai, LIU Yang,et al. Treatment of oil sands process-affected water using membrane bioreactor coupled with ozonation:A comparative study[J]. Chemical Engineering Journal,2016,302:485-497. doi:10.1016/j.cej.2016.05.082
|
56 |
ZHANG Ying, KLAMERTH N, MESSELE S A,et al. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N’-disuccinic acid-modified Fenton process[J]. Journal of Hazardous Materials,2016,318:371-378. doi:10.1016/j.jhazmat.2016.06.063
|
57 |
ZHANG Ying, KLAMERTH N, GAMAL EL-DIN M. Degradation of a model naphthenic acid by nitrilotriacetic acid-modified Fenton process[J]. Chemical Engineering Journal,2016,292:340-347. doi:10.1016/j.cej.2016.02.045
|
58 |
WANG Chengjin, KLAMERTH N, MESSELE S A,et al. Comparison of UV/hydrogen peroxide,potassium ferrate(Ⅵ),and ozone in oxidizing the organic fraction of oil sands process-affected water(OSPW)[J]. Water Research,2016,100:476-485. doi:10.1016/j.watres.2016.05.037
|
59 |
LESHUK T, WONG T, LINLEY S,et al. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water[J]. Chemosphere,2016,144:1854-1861. doi:10.1016/j.chemosphere.2015.10.073
|
60 |
LESHUK T, DE OLIVEIRA LIVERA D, PERU K M,et al. Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water:Multifactorial determination of significant factors[J]. Chemosphere,2016,165:10-17. doi:10.1016/j.chemosphere.2016.08.115
|
61 |
SHU Zengquan, LI Chao, BELOSEVIC M,et al. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation[J]. Environmental Science & Technology,2014,48(16):9692-9701. doi:10.1021/es5017558
|
62 |
ABDALRHMAN A S, ZHANG Yanyan, ARSLAN M,et al. Low-current electro-oxidation enhanced the biodegradation of the recalcitrant naphthenic acids in oil sands process water[J]. Journal of Hazardous Materials,2020,398:122807. doi:10.1016/j.jhazmat.2020.122807
|
63 |
ABDALRHMAN A S, GANIYU S O, GAMAL EL-DIN M. Degradation kinetics and structure-reactivity relation of naphthenic acids during anodic oxidation on graphite electrodes[J]. Chemical Engineering Journal,2019,370:997-1007. doi:10.1016/j.cej.2019.03.281
|
64 |
YU Guangfei, WANG Yuxian, CAO Hongbin,et al. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification[J]. Environmental Science & Technology,2020,54(10):5931-5946. doi:10.1021/acs.est.0c00575
|
65 |
HUANG Rongfu, QIN Rui, CHELME-AYALA P,et al. Assessment of ozonation reactivity of aromatic and oxidized naphthenic acids species separated using a silver-ion solid phase extraction method[J]. Chemosphere,2019,219:313-320. doi:10.1016/j.chemosphere.2018.11.180
|
66 |
孔涛,任诺,陈春茂,等. 多金属氧化物催化臭氧氧化有机污染物的研究进展[J]. 工业水处理,2021,41(7):1-18.
|
|
KONG Tao, REN Nuo, CHEN Chunmao,et al. Research progress of catalytic ozonation of organic contaminants by poly-metallic oxides[J]. Industrial Water Treatment,2021,41(7):1-18.
|
67 |
ZHANG Lei, ZHANG Yanyan, GAMAL EL-DIN M. Degradation of recalcitrant naphthenic acids from raw and ozonated oil sands process-affected waters by a semi-passive biofiltration process[J]. Water Research,2018,133:310-318. doi:10.1016/j.watres.2018.01.001
|
68 |
HUANG Chunkai, SHI Yijing, GAMAL EL-DIN M,et al. Optimization of ozonation combined with integrated fixed-film activated sludge(IFAS) in the treatment of oil sands process-affected water(OSPW)[J]. International Biodeterioration & Biodegradation,2016,112:31-41. doi:10.1016/j.ibiod.2016.04.037
|
69 |
ZHANG Yanyan, XUE Jinkai, LIU Yang,et al. The role of ozone pretreatment on optimization of membrane bioreactor for treatment of oil sands process-affected water[J]. Journal of Hazardous Materials,2018,347:470-477. doi:10.1016/j.jhazmat.2017.12.013
|
70 |
DONG Tao, ZHANG Yanyan, ISLAM M S,et al. The impact of various ozone pretreatment doses on the performance of endogenous microbial communities for the remediation of oil sands process-affected water[J]. International Biodeterioration & Biodegradation,2015,100:17-28. doi:10.1016/j.ibiod.2015.01.014
|
71 |
MESSELE S A, CHELME-AYALA P, GAMAL EL-DIN M. Catalytic ozonation of naphthenic acids in the presence of carbon-based metal-free catalysts:Performance and kinetic study[J]. Catalysis Today,2021,361:102-108. doi:10.1016/j.cattod.2020.01.042
|
72 |
JIBOURI A K H AL, WU Jiangning, UPRETI S R. Heterogeneous catalytic ozonation of naphthenic acids in water[J]. The Canadian Journal of Chemical Engineering,2019,97(1):67-73. doi:10.1002/cjce.23209
|
73 |
DEVI P, DALAI A K, CHAURASIA S P. Activity and stability of biochar in hydrogen peroxide based oxidation system for degradation of naphthenic acid[J]. Chemosphere,2020,241:125007. doi:10.1016/j.chemosphere.2019.125007
|
74 |
QIU Lu, LI Hanliang, DAI Fangwei,et al. Adsorption and photocatalytic degradation of benzene compounds on acidic F-TiO2/SiO2 catalyst[J]. Chemosphere,2020,246:125698. doi:10.1016/j.chemosphere.2019.125698
|
75 |
CHEN Ruimin, LI Jieyuan, SHENG Jianping,et al. Unveiling the unconventional roles of methyl number on the ring-opening barrier in photocatalytic decomposition of benzene,toluene and o-xylene[J]. Applied Catalysis B:Environmental,2020,278:119318. doi:10.1016/j.apcatb.2020.119318
|
76 |
MENG Lingjun, HOW Z T, GANIYU S O,et al. Solar photocatalytic treatment of model and real oil sands process water naphthenic acids by bismuth tungstate:Effect of catalyst morphology and cations on the degradation kinetics and pathways[J]. Journal of Hazardous Materials,2021,413:125396. doi:10.1016/j.jhazmat.2021.125396
|
77 |
DONG Shuying, DING Xuhui, GUO Teng,et al. Self-assembled hollow sphere shaped Bi2WO6/rGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants[J]. Chemical Engineering Journal,2017,316:778-789. doi:10.1016/j.cej.2017.02.017
|
78 |
CHEN Ping, WANG Fengliang, CHEN Zhifeng,et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst:The significant roles of reactive oxygen species[J]. Applied Catalysis B:Environmental,2017,204:250-259. doi:10.1016/j.apcatb.2016.11.040
|
79 |
FEIZPOOR S, HABIBI-YANGJEH A, SEIFZADEH D,et al. Combining carbon dots and Ag6Si2O7 nanoparticles with TiO2:Visible-light-driven photocatalysts with efficient performance for removal of pollutants[J]. Separation and Purification Technology,2020,248:116928. doi:10.1016/j.seppur.2020.116928
|
80 |
KALEBAILA K, FAIRBRIDGE C. UV photocatalytic degradation of commercial naphthenic acid using TiO2-zeolite composites[J]. Journal of Water Resource and Protection,2014,6(12):1198-1206. doi:10.4236/jwarp.2014.612109
|
81 |
QIN Rui, HOW Z T, GAMAL EL-DIN M. Photodegradation of naphthenic acids induced by natural photosensitizer in oil sands process water[J]. Water Research,2019,164:114913. doi:10.1016/j.watres.2019.114913
|
82 |
MISHRA S, MEDA V, DALAI A K,et al. Photocatalysis of naphthenic acids in water[J]. Journal of Water Resource and Protection,2010,2(7):644-650.
|
83 |
王磊,成先雄,连军锋,等. 表面改性控制碳活化过硫酸盐研究进展[J]. 石油化工,2020,49(7):722-728. doi:10.3969/j.issn.1000-8144.2020.07.016
|
|
WANG Lei, CHENG Xianxiong, LIAN Junfeng,et al. Progress in research on surface modification control of carbon activated persulfate[J]. Petrochemical Technology,2020,49(7):722-728. doi:10.3969/j.issn.1000-8144.2020.07.016
|
84 |
张昊楠,唐海,沙俊鹏,等. 热辅助CuO/ZSM-5活化过硫酸盐降解苯酚废水研究[J]. 化工新型材料,2017,45(3):186-189.
|
|
ZHANG Haonan, TANG Hai, SHA Junpeng,et al. Research on degradation of phenol wastewater suedCuO/ZSM-5 activated persulfate assisted by thermo process[J]. New Chemical Materials,2017,45(3):186-189.
|
85 |
FANG Zhi, HUANG Rongfu, HOW Z T,et al. Molecular transformation of dissolved organic matter in process water from oil and gas operation during UV/H2O2,UV/chlorine,and UV/persulfate processes[J]. The Science of the Total Environment,2020,730:139072. doi:10.1016/j.scitotenv.2020.139072
|
86 |
DRZEWICZ P, PEREZ-ESTRADA L, ALPATOVA A,et al. Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water[J]. Environmental Science & Technology,2012,46(16):8984-8991. doi:10.1021/es3011546
|
87 |
ZHU Kangmeng, WANG Xisong, GENG Mengzi,et al. Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar:Effect of biochar pyrolysis temperature,performance and mechanism[J]. Chemical Engineering Journal,2019,374:1253-1263. doi:10.1016/j.cej.2019.06.006
|
88 |
YAN Jingchun, LEI Min, ZHU Lihua,et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials,2011,186(2/3):1398-1404. doi:10.1016/j.jhazmat.2010.12.017
|
89 |
MATTHAIOU V, FRONTISTIS Z, PETALA A,et al. Utilization of raw red mud as a source of iron activating the persulfate oxidation of paraben[J]. Process Safety and Environmental Protection,2018,119:311-319. doi:10.1016/j.psep.2018.08.020
|
90 |
QIN Wenlei, LIN Zhuang, DONG Huiyu,et al. Kinetic and mechanistic insights into the abatement of clofibric acid by integrated UV/ozone/peroxydisulfate process:A modeling and theoretical study[J]. Water Research,2020,186:116336. doi:10.1016/j.watres.2020.116336
|
91 |
LIN Heng, ZHONG Xin, CIOTONEA C,et al. Efficient degradation of clofibric acid by electro-enhanced peroxydisulfate activation with Fe-Cu/SBA-15 catalyst[J]. Applied Catalysis B:Environmental,2018,230:1-10. doi:10.1016/j.apcatb.2018.02.014
|
92 |
ABDALRHMAN A S, ZHANG Yanyan, GAMAL EL-DIN M. Electro-oxidation by graphite anode for naphthenic acids degradation,biodegradability enhancement and toxicity reduction[J]. Science of the Total Environment,2019,671:270-279. doi:10.1016/j.scitotenv.2019.03.262
|
93 |
杨鹤云,郑兴. 高级氧化法降解有机污染物的应用及研究进展[J]. 水处理技术,2021,47(12):13-18.
|
|
YANG Heyun, ZHENG Xing. Application and research progress of advanced oxidation process for degradation of organic pollutants[J]. Technology of Water Treatment,2021,47(12):13-18.
|
94 |
MOREIRA F C, BOAVENTURA R A R, BRILLAS E,et al. Electrochemical advanced oxidation processes:A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B:Environmental,2017,202:217-261. doi:10.1016/j.apcatb.2016.08.037
|
95 |
刘浩,陈勇,刘晓东,等. 电化学氧化法处理工业废水现状研究进展[J]. 广东化工,2021,48(5):100-102. doi:10.3969/j.issn.1007-1865.2021.05.041
|
|
LIU Hao, CHEN Yong, LIU Xiaodong,et al. Advances in the treatment of industrial wastewater by electrochemical oxidation[J]. Guangdong Chemical Industry,2021,48(5):100-102. doi:10.3969/j.issn.1007-1865.2021.05.041
|
96 |
ABDALRHMAN A S, GAMAL EL-DIN M. Degradation of organics in real oil sands process water by electro-oxidation using graphite and dimensionally stable anodes[J]. Chemical Engineering Journal,2020,389:124406. doi:10.1016/j.cej.2020.124406
|
97 |
DIBAN N, URTIAGA A. Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes[J]. Environmental Science and Pollution Research,2018,25(35):34922-34929. doi:10.1007/s11356-017-1124-6
|
98 |
LI Chenxuan, CHEN Changbin, WANG Yunjie,et al. Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation[J]. Chemical Engineering Journal,2019,362:570-575. doi:10.1016/j.cej.2019.01.057
|
99 |
PAULSSEN J M, GIEG L M. Biodegradation of 1-adamantanecarboxylic acid by algal-bacterial microbial communities derived from oil sands tailings ponds[J]. Algal Research,2019,41:101528. doi:10.1016/j.algal.2019.101528
|
100 |
SCOTT A C, ZUBOT W, DAVIS C W,et al. Bioaccumulation potential of naphthenic acids and other ionizable dissolved organics in oil sands process water(OSPW):A review[J]. Science of the Total Environment,2020,712:134558. doi:10.1016/j.scitotenv.2019.134558
|
101 |
AHER A, PAPP J, COLBURN A,et al. Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane,and by nanofiltration[J]. Chemical Engineering Journal,2017,327:573-583. doi:10.1016/j.cej.2017.06.128
|
102 |
刘庆龙,唐景春. 环烷酸的生物降解技术[J]. 中国科技论文,2013,8(12):1197-1203. doi:10.3969/j.issn.2095-2783.2013.12.001
|
|
LIU Qinglong, TANG Jingchun. Biodegradation technology of naphthenic acids[J]. China Sciencepaper,2013,8(12):1197-1203. doi:10.3969/j.issn.2095-2783.2013.12.001
|
103 |
SHI Yijing, HUANG Chunkai, ROCHA K C,et al. Treatment of oil sands process-affected water using moving bed biofilm reactors:With and without ozone pretreatment[J]. Bioresource Technology,2015,192:219-227. doi:10.1016/j.biortech.2015.05.068
|
104 |
ZHANG Lei, ZHANG Yanyan, PATTERSON J,et al. Biofiltration of oil sands process water in fixed-bed biofilm reactors shapes microbial community structure for enhanced degradation of naphthenic acids[J]. Science of the Total Environment,2020,718:137028. doi:10.1016/j.scitotenv.2020.137028
|
105 |
XUE Jinkai, ZHANG Yanyan, LIU Yang,et al. Treatment of oil sands process-affected water(OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane[J]. Water Research,2016,88:1-11. doi:10.1016/j.watres.2015.09.051
|
106 |
YUE Siqing, RAMSAY B A, WANG Jiaxi,et al. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters[J]. Science of the Total Environment,2016,572:273-279. doi:10.1016/j.scitotenv.2016.07.163
|
107 |
QUINLAN P J, TAM K C. Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water[J]. Chemical Engineering Journal,2015,279:696-714. doi:10.1016/j.cej.2015.05.062
|
108 |
ZHANG Yanyan, MCPHEDRAN K N, GAMAL EL-DIN M. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water[J]. Science of the Total Environment,2015,521:59-67. doi:10.1016/j.scitotenv.2015.03.068
|
109 |
HUANG Chunkai, SHI Yijing, XUE Jinkai,et al. Comparison of biomass from integrated fixed-film activated sludge(IFAS),moving bed biofilm reactor(MBBR) and membrane bioreactor(MBR) treating recalcitrant organics:Importance of attached biomass[J]. Journal of Hazardous Materials,2017,326:120-129. doi:10.1016/j.jhazmat.2016.12.015
|
110 |
HAN Xiumei, SCOTT A C, FEDORAK P M,et al. Influence of molecular structure on the biodegradability of naphthenic acids[J]. Environmental Science & Technology,2008,42(4):1290-1295. doi:10.1021/es702220c
|
111 |
WANG Beili, WAN Yi, GAO Yingxin,et al. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant[J]. Environmental Science & Technology,2015,49(9):5796-5804. doi:10.1021/es505809g
|