| 1 | 赵彬, 丁雪松, 吴丹青, 等.  高负荷条件下好氧颗粒污泥同步脱氮除碳特性及微生物群落结构分析[J]. 环境工程学报, 2020, 14 (2): 295- 304. URL
 | 
																													
																						| 2 | BENGTSSON S ,  DE BLOIS M ,  WILEN B M , et al.  A comparison of aerobic granular sludge with conventional and compact biological treatment technologies[J]. Environmental Technology, 2018, 20 (4): 2769- 2778. URL
 | 
																													
																						| 3 | SARMA S J ,  TAY J H .  Aerobic granulation for future wastewater treatment technology: Challenges ahead[J]. Environmental Science: Water Research & Technology, 2018, 4 (1): 9- 15. URL
 | 
																													
																						| 4 | CORSINO S F ,  TRAPANI D D ,  TORREGROSSA M , et al.  Aerobic granular sludge treating high strength citrus wastewater: Analysis of pH and organic loading rate effect on kinetics, performance and stability[J]. Journal of Environmental Management, 2018, 214 (5): 23- 35. URL
 | 
																													
																						| 5 | 李旖瑜, 郑平, 张萌.  颗粒污泥结构体及其粘连机理[J]. 中国给水排水, 2017, 33 (22): 33- 37. URL
 | 
																													
																						| 6 | 明婕, 黄子萌, 董清林, 等.  好氧颗粒污泥的性质及形成机制[J]. 水处理技术, 2019, 45 (7): 1- 23. URL
 | 
																													
																						| 7 | XIN Xin ,  LU Hang ,  YAO Li , et al.  Rapid formation of aerobic granular sludge and its mechanism in a continuous-flow bioreactor[J]. Applied Biochemistry & Biotechnology, 2016, 181 (1): 424- 433. URL
 | 
																													
																						| 8 | LIANG Zhiwei ,  LI Wenhong ,  YANG Shangyuan , et al.  Extraction and structural characteristics of extracellular polymeric substances(EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81 (5): 626- 632. doi: 10.1016/j.chemosphere.2010.03.043
 | 
																													
																						| 9 | WANG Xia ,  AN Qiang ,  ZHAO Bin , et al.  Auto-aggregation properties of a novel aerobic denitrifier Enterobacter sp. strain FL[J]. Applied Microbiology and Biotechnology, 2018, 102 (4): 2019- 2030. doi: 10.1007/s00253-017-8720-8
 | 
																													
																						| 10 | LIU Zhe ,  LI Ning ,  GAO Min , et al.  Synergistic strengthening mechanism of hydraulic selection pressure and poly aluminum chloride (PAC) regulation on the aerobic sludge granulation[J]. Science of the Total Environment, 2019, 650, 941- 950. doi: 10.1016/j.scitotenv.2018.08.389
 | 
																													
																						| 11 | 李志华, 刘超, 赵静, 等.  丝状菌颗粒污泥形成过程及其对膨胀控制的启示[J]. 中国给水排水, 2013, 29 (13): 23- 27. doi: 10.3969/j.issn.1000-4602.2013.13.006
 | 
																													
																						| 12 | 林勇山, 滁文虹, 杨昌柱, 等.  丝状菌对好氧颗粒污泥形成的影响[J]. 环境工程, 2009, 27 (3): 63- 67. URL
 | 
																													
																						| 13 | CHEN Mingyuan ,  LEE D J ,  TAY J H .  Distribution of extracellular polymeric substances in aerobic granules[J]. Applied Microbiology and Biotechnology, 2007, 73 (6): 1463- 1469. doi: 10.1007/s00253-006-0617-x
 | 
																													
																						| 14 | ADAV S S ,  LEE D J ,  SHOW K Y , et al.  Aerobic granular sludge: Recent advances[J]. Biotechnology Advances, 2008, 26 (5): 411- 423. doi: 10.1016/j.biotechadv.2008.05.002
 | 
																													
																						| 15 | 邵享文, 张婷婷, 艾翠玲, 等.  采用ASBR快速培养颗粒污泥及其菌群分析[J]. 中国给水排水, 2018, 34 (19): 30- 36. URL
 | 
																													
																						| 16 | 陆佳, 刘永军, 刘喆, 等.  有机负荷对污泥胞外聚合物分泌特性及颗粒形成的影响[J]. 化工进展, 2018, 37 (4): 1616- 1622. URL
 | 
																													
																						| 17 | 李黔花, 李志华, 岳秀, 等.  好氧颗粒污泥处理印染废水的效能及其微生物特征[J]. 工业水处理, 2020, 40 (3): 43- 48. URL
 | 
																													
																						| 18 | 梁梓轩, 涂倩倩, 苏晓轩, 等.  不同强化类型的好氧颗粒污泥结构特性[J]. 土木与环境工程学报, 2019, 41 (6): 167- 173. URL
 | 
																													
																						| 19 | NITTAMI T ,  MUKAI M ,  UEMATSU K , et al.  Effects of different carbon sources on enhanced biological phosphorus removal and "Candidatus Accumulibacter" community composition under continuous aerobic condition[J]. Applied Microbiology & Biotechnology, 2017, 101, 8607- 8619. URL
 | 
																													
																						| 20 | HE Qiulai ,  SONG Jianyang ,  ZHANG Wei , et al.  Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludge[J]. Journal of Hazardous Materials, 2020, 382 (15): 121043. | 
																													
																						| 21 | SUN Haohao ,  YU Ping ,  LI Qiaoling , et al.  Transformation of anaerobic granules into aerobic granules and the succession of bacterial community[J]. Applied Microbiology & Biotechnology, 2017, 101 (20): 7703- 7713. | 
																													
																						| 22 | 王佳伟, 高永青, 孙丽欣, 等.  中试SBR内好氧颗粒污泥培养和微生物群落变化[J]. 中国给水排水, 2019, 35 (7): 1- 7. URL
 | 
																													
																						| 23 | 王启镔, 苑泉, 宫徽, 等.  SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析[J]. 环境工程学报, 2018, 12 (11): 47- 56. URL
 | 
																													
																						| 24 | CARRERA P ,  CAMPO R ,  MENDEZ R , et al.  Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents?[J]. Chemosphere, 2019, 226 (7): 865- 873. URL
 | 
																													
																						| 25 | YARLAGADDA V N ,  MANJUNATH S .  Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment[J]. Current Opinion in Environmental Science & Health, 2019, 12, 57- 65. URL
 | 
																													
																						| 26 | 李冬, 魏子清, 劳会妹, 等.  阶梯曝气对城市污水好氧颗粒污泥系统的影响[J]. 环境科学, 2019, 40 (12): 5456- 5464. URL
 | 
																													
																						| 27 | 赵锡锋, 李兴强, 李军, 等.  好氧颗粒污泥技术中试研究及应用进展[J]. 中国给水排水, 2020, 36 (8): 30- 37. URL
 | 
																													
																						| 28 | TAY J H ,  LIU Qishan ,  LIU Yu .  The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology & Biotechnology, 2001, 57 (1/2): 227- 233. | 
																													
																						| 29 | ZHOU Jiaheng ,  ZHANG Zhiming ,  ZHAO Hang , et al.  Optimizing granules size distribution for aerobic granular sludge stability: Effect of a novel funnel-shaped internals on hydraulic shear stress[J]. Bioresource Technology, 2016, 216, 562- 570. doi: 10.1016/j.biortech.2016.05.079
 | 
																													
																						| 30 | DEVLIN T R ,  DI BIASE A ,  KOWALSKI M S , et al.  Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics[J]. Bioresource Technology, 2017, 224, 229- 235. doi: 10.1016/j.biortech.2016.11.005
 | 
																													
																						| 31 | LONG Bei ,  YANG Changzhu ,  PU Wenhong , et al.  Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor[J]. Bioresource Technology, 2015, 182, 314- 322. doi: 10.1016/j.biortech.2015.02.029
 | 
																													
																						| 32 | LIU Yongqiang ,  TAY J H .  Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate[J]. Water Research, 2015, 80 (9): 256- 266. | 
																													
																						| 33 | ZHANG Zhiming ,  QIU Jianxiang ,  XIANG Ronghao , et al.  Organic loading rate(OLR) regulation for enhancement of aerobic sludge granulation: Role of key microorganism and their function[J]. Science of The Total Environment, 2019, 653 (25): 630- 637. | 
																													
																						| 34 | CHEN Han ,  LI Ang ,  CUI Di , et al.  Evolution of microbial community and key genera in the formation and stability of aerobic granular sludge under a high organic loading rate[J]. Bioresource Technology Reports, 2019, 7, 100280. doi: 10.1016/j.biteb.2019.100280
 | 
																													
																						| 35 | DE SOUSA ROLLEMBERG S L ,  BARROS A R M ,  FIRMINO P I M , et al.  Aerobic granular sludge: Cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018, 270, 678- 688. doi: 10.1016/j.biortech.2018.08.130
 | 
																													
																						| 36 | ZHU Liang ,  YU Yanwen ,  DAI Xin , et al.  Optimization of selective sludge discharge mode for enhancing the stability of aerobic granular sludge process[J]. Chemical Engineering Journal, 2013, 217, 442- 446. doi: 10.1016/j.cej.2012.11.132
 | 
																													
																						| 37 | 董苗苗, 陈垚, 蒋彬, 等.  有机负荷及DO对高盐好氧颗粒污泥稳定性的影响[J]. 水处理技术, 2015, 41 (6): 67- 70. URL
 | 
																													
																						| 38 | SAJJAD M ,  KIM K S .  Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50 (6): 966- 972. doi: 10.1016/j.procbio.2015.02.020
 | 
																													
																						| 39 | 李昱欢, 刘永军, 李洋媚, 等.  Al快速造粒过程: 物化-生化作用的耦合[J]. 中国环境科学, 2017, 37 (6): 2122- 2129. doi: 10.3969/j.issn.1000-6923.2017.06.017
 | 
																													
																						| 40 | 刘绍根, 孙菁, 徐锐.  Ca2+、Mg2+对好氧污泥快速颗粒化的影响研究[J]. 环境科学学报, 2015, 35 (1): 168- 176. URL
 | 
																													
																						| 41 | 唐朝春, 叶鑫, 刘名, 等.  不同碳氮比下好氧颗粒污泥生长特性研究[J]. 环境科学与技术, 2016, 39 (2): 128- 132. URL
 | 
																													
																						| 42 | 宋志伟, 徐雪冬, 张晴, 等.  碳氮比对好氧颗粒污泥稳定性的影响[J]. 环境工程学报, 2020, 14 (1): 262- 269. URL
 | 
																													
																						| 43 | SARVAJITH M ,  KIRAN KUMAR REDDY G ,  NANCHARAIAH Y V .  Aerobic granular sludge for high-strength ammonium wastewater treatment: Effect of COD/N ratios, long-term stability and nitrogen removal pathways[J]. Bioresource Technology, 2020, 306, 123150. doi: 10.1016/j.biortech.2020.123150
 | 
																													
																						| 44 | IVANOV V ,  WANG X H ,  TAY T L , et al.  Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment[J]. Applied Microbiology & Biotechnology, 2006, 70 (3): 374- 381. URL
 | 
																													
																						| 45 | SONG Zhiwei ,  PAN Yuejun ,  ZHANG Kun , et al.  Effect of seed sludge on characteristics and microbial community of aerobic granular sludge[J]. Journal of Environmental Sciences, 2010, 22 (9): 1312- 1318. doi: 10.1016/S1001-0742(09)60256-4
 | 
																													
																						| 46 | 黄思琦, 邓风, 佘谱颖, 等.  好氧颗粒污泥快速培养及其稳定性研究[J]. 工业水处理, 2018, 38 (2): 106- 109. URL
 | 
																													
																						| 47 | WANG Xiaochun ,  KANG Jing ,  ZHAO Xia , et al.  The key role of inoculated sludge in fast start-up of sequencing batch reactor for the cultivation of aerobic granular sludge[J]. Journal of Environmental Sciences, 2018, 78, 127- 136. URL
 | 
																													
																						| 48 | JIANG Yu ,  YANG Kai ,  SHANG Yu , et al.  Response and recovery of aerobic granular sludge to pH shock for simultaneous removal of aniline and nitrogen[J]. Chemosphere, 2019, 221, 366- 374. doi: 10.1016/j.chemosphere.2018.12.207
 | 
																													
																						| 49 | MUÑOZ-PALAZŌN B ,  RODRIGUEZ-SANCHEZ A ,  HURTADOMARTINEZ M , et al.  Polar Arctic Circle biomass enhances performance and stability of aerobic granular sludge systems operated under different temperatures[J]. Bioresource Technology, 2019, 300, 122650. URL
 | 
																													
																						| 50 | GONZALEZNMARTINEZ A ,  MUNOZÑ-PALAZŌN B ,  RODRIGUEZSANCHEZ A , et al.  Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with coldadapted activated sludge from Finland[J]. Bioresource Technology, 2017, 239, 180- 189. doi: 10.1016/j.biortech.2017.05.037
 | 
																													
																						| 51 | AB HALIM M H ,  NOR ANUAR A ,  ABDUL JAMAL N S , et al.  Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater[J]. Journal of Environmental Management, 2016, 184 (2): 271- 280. URL
 | 
																													
																						| 52 | TAY J H ,  SARMA S J ,  CHU A .  Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2017, 35 (1): 66- 78. doi: 10.1016/j.tibtech.2016.07.003
 | 
																													
																						| 53 | 唐堂, 王硕, 蒋志坚, 等.  群感效应与信号分子在污泥颗粒化过程中的作用研究进展[J]. 应用与环境生物学报, 2016, 22 (4): 718- 724. URL
 | 
																													
																						| 54 | 催理慧, 万俊峰. AHLs介导群感效应在好氧颗粒污泥中的研究进展[J/OL]. 微生物学通报: 1-15. https://doi.org/10.13344/j.microbiol.china.200180.2020-08-24. | 
																													
																						| 55 | 支丽玲, 马鑫欣, 刘奇欣, 等.  好氧颗粒污泥形成过程中群感效应的作用研究[J]. 中国环境科学, 2020, 40 (5): 2148- 2156. doi: 10.3969/j.issn.1000-6923.2020.05.035
 | 
																													
																						| 56 | 王玉莹, 支丽玲, 马鑫欣, 等.  信号分子在好氧颗粒污泥形成过程中的作用[J]. 中国环境科学, 2019, 39 (4): 174- 182. URL
 | 
																													
																						| 57 | HE Qiulai ,  WANG Hongyu ,  CHEN Li , et al.  Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures[J]. Journal of Hazardous Materials, 2020, 384, 121454. doi: 10.1016/j.jhazmat.2019.121454
 | 
																													
																						| 58 | 王玉莹, 支丽玲, 马鑫欣, 等.  好氧颗粒污泥胞外聚合物组分特征分析[J]. 哈尔滨工业大学学报, 2019, 52 (2): 153- 160. URL
 | 
																													
																						| 59 | ZHANG Bing ,  LENS P N L ,  SHI Wenxin , et al.  Enhancement of aerobic granulation and nutrient removal by an algal-bacterial consortium in a lab-scale photobioreactor[J]. Chemical Engineering Journal, 2018, 334 (15): 2373- 2382. URL
 | 
																													
																						| 60 | LONG Bei ,  XUAN Xinpeng ,  YANG Changzhu , et al.  Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control[J]. Chemosphere, 2019, 225, 460- 469. doi: 10.1016/j.chemosphere.2019.03.048
 |