工业水处理 ›› 2025, Vol. 45 ›› Issue (7): 94-103. doi: 10.19965/j.cnki.iwt.2024-0502

• 试验研究 • 上一篇    下一篇

油田回注水超磁分离试验与数值模拟优化

江志华(), 庞晓辰(), 陈晓英, 张明   

  1. 中海油研究总院有限责任公司,北京 100028
  • 收稿日期:2024-10-26 出版日期:2025-07-20 发布日期:2025-07-22
  • 通讯作者: 庞晓辰
  • 作者简介:

    江志华(1983— ),高级工程师,E-mail:

  • 基金资助:
    中国海洋石油集团公司“十四五”重大科技项目

Experimental study and numerical simulation optimization of ultramagnetic separation for oilfield reinjection water

Zhihua JIANG(), Xiaochen PANG(), Xiaoying CHEN, Ming ZHANG   

  1. CNOOC Research Institute, Beijing 100028, China
  • Received:2024-10-26 Online:2025-07-20 Published:2025-07-22
  • Contact: Xiaochen PANG

摘要:

针对中东某油田高温高盐回注水处理难题,采用超磁分离技术去除无机胶体悬浮物和溶解性Fe离子。根据超磁分离后出水悬浮物及Fe离子浓度两个指标确定了最佳磁性加载剂粒径为75 μm,最佳投加量为6~7 g/L。磁场强度对悬浮物及铁离子的去除率影响并不明显,但对磁性悬浮物絮体的去除效率有直接影响。利用COMSOL Multiphysics软件进行多物理场耦合分析和颗粒轨迹追踪,揭示了影响高盐废水速度场均匀性和絮体稳定性的关键因素。研究发现,进水区域易形成滞水导致盐结晶,通过优化进水口设计控制初始速度、调节装置液位和降低筒体外层转速,可有效优化速度场分布,避免絮体解絮和盐分结晶。絮体颗粒与流体间的相对速度在被磁分离鼓吸附时达到最大,与筒体转速正相关,高转速会增加絮体破碎风险。研究为超磁分离技术在油田水处理中的应用提供了理论依据和参数优化指导。

关键词: 超磁分离, 高温高盐水处理, 除铁, 多物理场仿真

Abstract:

To address the challenges of treating high-temperature, high-salinity reinjection water in a Middle Eastern oilfield, ultramagnetic separation technology was employed to remove inorganic colloidal suspended solids and dissolved Fe ions. The optimal particle size of the magnetic loading agents was determined to be 75 μm, with an effective dosage of 6-7 g/L. The magnetic field intensity showed negligible influence on the removal efficiency of suspended solids and iron ions, but directly affected the adsorption efficiency of magnetic suspended solids. COMSOL Multiphysics software was utilized for multi-physical field coupling analysis and particle trajectory tracking, revealing key factors affecting the uniformity of the velocity field and the stability of flocs. The study identified stagnant zones in the inlet area prone to salt crystallization. By optimizing the inlet design to control initial velocity, adjusting device liquid level, and reducing the rotation speed of the outer layer of the cylinder, the velocity field distribution could be effectively optimized to prevent floc disintegration and salt crystallization. The relative velocity between floc particles and the fluid reached its maximum when the flocs were adsorbed by the separation magnetic drum, which was positively correlated with the rotation speed of the cylinder. High rotation speed increased the risk of floc breakage. This research provides theoretical foundations and parameter optimization guidance for applying ultramagnetic separation technology in oilfield water treatment.

Key words: ultramagnetic separation, high temperature and high salinity water treatment, iron removal, multiphysics simulation

中图分类号: