[1] 洪安安, 刘德华, 刘灿明. 活性污泥的主要微生物菌群及研究方法[J]. 工业水处理, 2009, 29(2): 10-14.
[2] 付欢. 论活性污泥微生物指示作用[J]. 环境保护与循环经济, 2013, 8: 62-67.
[3] Manefield M, Griffiths R I, Leigh M B, et al. Functional and compositional comparison of two activated sludge communities remediating coking effluent[J]. Environmental Microbiology, 2005, 7(5): 715-722.
[4] Sanguin H, Sarniguet A, Gazengel K, et al. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture[J]. New Phytologist, 2009, 184(3): 694-707.
[5] Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2007, 41(5): 1110-1120.
[6] Wang Liangming, Chien I C, Yuan Shilung, et al. Nitrifying commu-nity structures and nitrification performance of full-scale municipal and swine wastewater treatment plants[J]. Chemosphere, 2009, 75 (2): 234 -242.
[7] 赵翠娟, 宋文军, 朱高雄. 除氨氮菌在污水处理中的研究进展[J]. 生物技术通报, 2013(2): 31-34.
[8] 袁怡, 黄勇, 李祥. 工业废水反硝化技术研究进展[J]. 工业水处理, 2013, 33(4): 1-5.
[9] Dytczak M A, Londry K L, Oleszkiewicz J A. Nitrifying genera in ac-tivated sludge may influence nitrification rates[J]. Water Environ-mental Research, 2008, 80(5): 388-396.
[10] 朱海霞, 陈林海, 张大伟, 等. 活性污泥微生物菌群研究方法进展[J]. 生态学报, 2007, 27(1): 314-322.
[11] 朱铁群, 李凯慧, 张杰. 活性污泥驯化的微生物生态学原理[J]. 微生物学通报, 2008, 35(6): 939-943.
[12] Zhang Bin, Sun Baosheng, Ji Min, et al. Population dynamic suc-cession and quantification of ammonia-oxidizing bacteria in a membrane bioreactor treating municipal wastewater[J].Journal of Hazardous Materials, 2009, 165(1/2/3): 796-803.
[13] 苗志加, 彭永臻, 王淦, 等. 强化生物除磷工艺富集聚磷菌及其微生物菌群分析[J]. 北京工业大学学报, 2013, 39(5): 742-748.
[14] Nielsen P H, Mielczarek A T, Kragelund C, et al. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants[J]. Water Research, 2010, 44(17): 5070-5088.
[15] Mielczarek A T, Nguyen H T T, Nielsen J L, et al. Population dy-namics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants[J]. Water Research, 2013, 47(4): 1529-1544.
[16] Lin C K, Kateyama Y, Hosomi M, et al. The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes[J]. Water Re-search, 2003, 37(12): 2944-2952.
[17] Wang Xiuheng, Zhang Kun, Ren Nanqi, et al. Monitoring microbial community structure and succession of an A/O SBR during start-up period using PCR-DGGE[J]. Journal of Environmental Sciences, 2009, 21(2): 223-228.
[18] Zou Hua, Du Guocheng, Ruan Wenquan, et al. Role of nitrate in biological phosphorus removal in a sequencing batch reactor[J]. World Journal of Microbiology and Biotechnology, 2006, 22(7): 701-706.
[19] 周康群, 刘晖, 孙彦富, 等. 反硝化聚磷菌的SBR反应器中微生物种群与浓度变化[J]. 中南大学学报: 自然科学版, 2008, 39(4): 705-711.
[20] 刘立, 汤兵, 黄绍松, 等. 反硝化聚磷菌快速富集培养及其荧光原位杂交技术鉴别[J]. 环境科学, 2013, 34(7): 2869-2875.
[21] Rani A, Porwal S, Sharma R, et al. Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches[J]. Bioresource Technology, 2008, 99(15): 7098-7107.
[22] Xia Siqing, Jia Renyong, Feng Fan, et al. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process[J]. Bioresource Technology, 2012, 106: 36-43.
[23] Liang Duan, Ivan M A, Huang Chunlin, et al. Effects of short solids retention time on microbial community in a membrane bioreactor[J]. Bioresource Technology, 2009, 100(14): 3489-3496.
[24] Ahmed Z, Lim B R, Cho J, et al. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: effect of different carbon sources[J]. Water Re-search, 2008, 42(1/2): 198-210.
[25] Mormile M R, Macauley J J, Adams C D. Diversity of tet resistance genes in tetracycline-resistant bacteria isolated from a wine lagoon with low antibiotic impact[J]. Canadian Journal of Microbiology, 2007, 53(12): 1307-1315.
[26] 霍炜洁, 肖晶晶, 黄亚丽, 等. 微生物技术修复水污染的研究进展[J]. 生物技术通报, 2008(4): 94-98.
[27] 周鑫淼, 陈洁君, 耿立召, 等. 邻苯二酚2,3-双加氧酶的结构和功能研究进展[J]. 生物技术通报, 2007(4): 51-54.
[28] Táncsics A, Szabó I, Baka E, et al. Investigation of catechol 2, 3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater[J]. Systematic and Applied Microbiology, 2010, 33(7): 398-406.
[29] Sun Bozhi, Ko K, Ramsay J A. Biodegradation of 1, 4-dioxane by a Flavobacterium[J]. Biodegradation, 2011, 22(3): 651-659.
[30] Wexler M, Bond P L, Richardson D J, et al. A wide host-range me-tagenomic library from a wastewater treatment plant yields a novel alcohol/aldehyde dehydrogenase[J]. Environmental Microbiology, 2005, 7(12): 1917-1926.
[31] 秦华明, 莫测辉. 聚丙烯酰胺微生物降解研究进展[J]. 生物技术通报, 2007(6): 121-125.
[32] 金若菲, 周集体, 王竟, 等. 膜生物反应器中的生物学特性[J]. 微生物学通报, 2004, 31(2): 121-125.
[33] Jiang Jianguo, Wu Shenggui, Shen Yunfen. Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake[J]. Chemosphere, 2007, 66(3): 523-532.
[34] Nicolau A, Dias N, Mota M, et al. Trends in the use of protozoa in the assessment of wastewater treatment[J]. Research Microbiology, 2001, 152(7): 621-630.
[35] Martín-Cereceda M, Pérez-Uz B, Serrano S, et al. Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors[J]. Microbiological Research, 2001, 156(3): 225-238.
[36] Liu Juan, Yang Min, Qi Rong, et al. Comparative study of protozoan communities in full-scale MWTPs in Beijing related to treatment processes[J]. Water Research, 2008, 42(8/9): 1907-1918.
[37] Dubber D, Gray N F. The influence of fundamental design parame-ters on ciliates community structure in Irish activated sludge systems[J]. European Journal of Protistology, 2011, 47(4): 274-286.
[38] Wang Yulan, Yu Shuili, Shi Wenxin, et al. Comparative performance between intermittently cyclic activated sludge-membrane bioreactor and anoxic/aerobic-membrane bioreactor[J]. Bioresource Technology, 2009, 100(17): 3877-3881. |