[1] 王建芳,赵庆良,林佶侃,等. 生物强化技术及其在废水生物处理中的应用[J]. 环境工程学报,2007,1(9):40-45.
[2] Grady L C P,Daigger G T,Lim H C. Biological wastewater treatment[M]. 3rd Revised Edition,Florida:CRC Press Inc,2003:1-5.
[3] 吴平,吴慧芳. 废水厌氧处理工艺的发展[J]. 工业安全与环保,2006,32(9):22-24.
[4] 郝晓地,蔡正清,甘一萍. 剩余污泥预处理技术概览[J]. 环境科学学报,2011,31(1):1-12.
[5] 张洪林. 难降解有机物的处理技术进展[J]. 水处理技术,1998 (5):259-264.
[6] Rabaey K,Angenent L,Schroder U,et al. Bioelectrochemical systems:From extracellular electron transfer to biotechnological application[M]. London:IWA Publishing,2010:2-5.
[7] Pant D,Singh A,Van Bogaert G,et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters[J]. RSC Advances,2012 (2):1248-1263.
[8] Logan B E,Korneel R. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690.
[9] Escapa A,San-Martín M I,Mateos R,et al. Scaling-up of membraneless microbial electrolysis cells(MECs) for domestic wastewater treatment:Bottlenecks and limitations[J]. Bioresource Technology,2015, 180:72-78.
[10] Thrash J C,Coates J D. Review:Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science & Technology,2008,42(11):3921-3931.
[11] Torres C I,Krajmalnik-Brown R,Parameswaran P,et al. Selecting anode-respiring bacteria based on anode potential:Phylogenetic,electrochemical,and microscopic characterization[J]. Environmental Science & Technology,2009,43(24):9519-9524.
[12] Rittmann B E,Krajmalnik-Brown R,Halden R U. Pre-genomic,genomic and postgenomic study of microbial communities involved in bioenergy[J]. Nature Reviews Microbiology,2008,6(8):604-612.
[13] Ullery M L,Logan B E. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells[J]. Bioresource Technology,2014,170:530-537.
[14] Kashima H,Regan J M. Facultative nitrate reduction by electrode-respiring[J]. Environmental Science & Technology,2015,49(5):3195-3202.
[15] Nguyen V K,Hong S,Park Y,et al. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes[J]. Journal of Bioscience and Bioengineering,2015,119(2):180-187.
[16] Pous N,Puig S,Balaguer M D, et al. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems[J]. Chemical Engineering Journal,2015,263:151-159.
[17] Su Wentao,Zhang Lixia,Tao Yong,et al. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems[J]. Electrochemistry Communications,2012,22:37-40.
[18] Coma M,Puig S,Pous N,et al. Biocatalysed sulphate removal in a BES cathode[J]. Bioresource Technology,2013,130:218-223.
[19] Luo Haiping,Fu Shiyu,Liu Guangli. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells[J]. Bioresource Technology,2014,167:462-468.
[20] Jiang Yong,Su Min,Li Daping. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells:Microbial electrolysis cell(MFCs-MEC) coupled system[J]. Appl. Biochem. Biotechnol.,2014,172(5):2720-2731.
[21] Lu Zhihao,Chang Dingming,Ma Jingxing,et al. Behavior of metal ions in bioelectrochemical systems:A review[J]. Journal of Power Sources,2015,275:243-260.
[22] Heijne A T,Liu Fei,Weijden R V D,et al. Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology,2010,44(11):4376-4381.
[23] Wang Z,Lim B,Choi C. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell[J]. Bioresource Technology,2011,102(10):6304-6307.
[24] Tao H,Li W,Liang M,et al. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(Ⅱ) with electricity generation[J]. Bioresource Technology,2011,102(7):4774-4778.
[25] Choi C,Cui Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell[J]. Bioresource Technology,2012,107:522-525.
[26] Modin O,Wang X,Wu X,et al. Bioelectrochemical recovery of Cu,Pb,Cd,and Zn from dilute solutions[J]. Journal of Hazardous Materials,2012,235/236(20):291-297.
[27] Qin Bangyu,Luo Haiping,Liu Guangli,et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresource Technology,2012,121:458-461.
[28] Luo Haiping,Liu Guangli,Zhang Renduo,et al. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell[J]. Journal of Hazardous Materials,2014,270(3):153-159.
[29] Villano M,Scardala S,Aulenta F,et al. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell[J]. Bioresource Technology,2013,130:366-371.
[30] Xu Yuan,Jiang Yangyue,Chen Yingwen. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode[J]. Water Environment Research,2014,86(7):649-653.
[31] Zeppilli M,Villano M,Aulenta F,et al. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell[J]. Environmental Science and Pollution Research,2014,22(10):1-12.
[32] Nam J,Yates M D,Zaybak Z,et al. Examination of protein degradation in continuous flow,microbial electrolysis cells treating fermentation wastewater[J]. Bioresource Technology,2014,171:182-186.
[33] Wang Youzhao,Wang Aijie,Liu Wenzong,et al. Enhanced azo dye removal through anode biofilm acclimation to toxicity in single-chamber biocatalyzed electrolysis system[J]. Bioresource Technology,2013,142:688-692.
[34] Kong Fangying,Wang Aijie,Cheng Haoyi,et al. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment[J]. Bioresource Technology,2014,151:332-339.
[35] Kong Fangying,Wang Aijie,Ren Hongyu. Improved azo dye decolorization in an advanced integrated system of bioelectrochemical module with surrounding electrode deployment and anaerobic sludge reactor[J]. Bioresource Technology,2015,175:624-628.
[36] Cui Dan,Guo Yuqi,Cheng Haoyi,et al. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor[J]. Journal of Hazardous Materials,2012,239/240(8):257-264.
[37] Cui Dan,Guo Yuqi,Lee H,et al. Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor:Optimization and characterization[J]. Chemical Engineering Journal,2014,243: 355-363.
[38] Liang Bin,Cheng Haoyi,Van Nostrand J D,et al. Microbial community structure and function of Nitrobenzene reduction biocathode in response to carbon source switchover[J]. Water Research,2014, 54:137-148.
[39] Shen Jinyou,Feng Cencen,Zhang Yanyan,et al. Bioelectrochemical system for recalcitrant p-nitrophennol removal[J]. Journal of Hazardous Materials,2012,209/210(4):516-519.
[40] Shen J,Zhang Y,Xu X,et al. Role of molecular structure on bioelectrochemical reduction of mononitrophenols from wastewater[J]. Water Research,2013,47(15):5511-5519.
[41] Mu Y,Rozendal R A,Rabaey K,et al. Nitrobenzene removal in bioelectrochemical systems[J]. Environmental Science & Technology,2009,43(22):8690-8695.
[42] Feng Huajun,Zhang Xueqin,Liang Yuxiang,et al. Enhanced removal of p-fluoronitrobenzene using bioelectrochemical system[J]. Water Research,2014,60:54-63.
[43] Wang Aijie,Cheng Haoyi,Liang Bin,et al. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode[J]. Environmental Science & Technology,2011,45(23):10186-10193.
[44] Wang Aijie,Cui Dan,Cheng Haoyi,et al. A membrane-free,continuously feeding,single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction[J]. Journal of Hazardous Materials,2012,199/200(2):401-409.
[45] Mu Y,Radjenovic J,Shen J,et al. Dehalogenation of iodinated Xray contrast media in a bioelectrochemical system[J]. Environmental Science & Technology,2011,45(2):782-788.
[46] Liang Bin,Cheng Haoyi,Kong Deyong,et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode[J]. Environmental Science & Technology,2013,47(10): 5353-5356.
[47] Sun Fei,Liu Hao,Liang Bin,et al. Reductive degradation of chloramphenicol using bioelectrochemical system(BES):A comparative study of abiotic cathode and biocathode[J]. Bioresource Technology,2013,143:699-702.
[48] Kong Deyong,Liang Bin,Lee D,et al. Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system[J]. Journal of Environmental Sciences,2014,26(8):1689-1697.
[49] Velvizhi G,Goud R K,Mohan S V. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation[J]. Bioresource Technology,2014,151: 214-220.
[50] Gil-Carrera L,Mehta P,Escapa A,et al. Optimizing the electrode size and arrangement in a microbial electrolysis cell[J]. Bioresource Technology,2011,102(20):9593-9598.
[51] Gil-Carrera L,Escapa A,Carracedo B,et al. Performance of a semipilot tubular microbial electrolysis cell(MEC) under several hydraulic retention times and applied voltages[J]. Bioresource Technology,2013,146:63-69.
[52] Heidrich E S,Edwards S R,Dolfing J,et al. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period[J]. Bioresource Technology,2014,173:87-95.
[53] Heidrich E S,Dolfing J,Scott K,et al. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell[J]. Applied Microbiology and Biotechnology,2013,97(15):69796989.
[54] Lim S J,Park W,Kim T,et al. Swine wastewater treatment using a unique sequence of ion exchange membranes and bioelectrochemical system[J]. Bioresource Technology,2012,118:163-169.
[55] Rozendal R A,Hamelers H V M,Buisman C J N. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environmental Science & Technology,2006,40(17):5206-5211.
[56] Rozendal R A,Hamelers H V M,Rabaey K,et al. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends in Biotechnology,2008,26(8):450-459. |