[1] Ma Shuhua, Xu Hong, Zhang Rubo. Theoretical studies on the mechanism of the proton-transfer-coupled electron transfer reactions between Menaquinone QA and Ubiquinone QB in the bacterial photosynthetic reaction center of Rhodopseudomona viridis[J]. Acta Bootanica Sinica, 2002, 44(12): 1409-1417.
[2] 孔秀琴, 赵峰, 石小锋, 等. 光合细菌处理高含盐有机废水研究[J]. 水处理技术, 2010, 36(9): 90-92.
[3] de-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects[J]. Bioresource Technology, 2010, 101(6): 1611-1627.
[4] Moreno-Garrido I. Microalgae immobilization: Current techniques and uses[J]. Bioresource Technology, 2008, 99(10): 3949-3964.
[5] 黄宝兴, 李兰生, 赵亮, 等. 固定化海洋光合细菌处理生活污水的研究[J]. 海洋湖沼通报, 2006(2): 69-74.
[6] Nagadomi H, Kitamura T, Watanabe M, et al. Simultaneous removal of chemical oxygen demand(COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria[J]. Biotechnology Letters, 2000, 22: 1369-1372.
[7] Meunier C F, Dandoy P, Su Baolian. Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials[J]. Journal of Colloid and Interface Science, 2010, 342(2): 211-224.
[8] Léonard A, Dandoy P, Danloy E, et al. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy[J]. Chemical Society Reviews, 2011, 40(2): 860-885.
[9] Wu Fang, Wang Wei, Liu Li, et al. Monodisperse hybrid microcapsules with an ultrathin shell of submicron thickness for rapid enzyme reactions[J]. Journal of Materials Chemistry B, 2015, 3(5): 796-803.
[10] Mutlu B R, Yeom S, Wackett L P, et al. Modelling and optimization of a bioremediation system utilizing silica gel encapsulated wholecell biocatalyst[J]. Chemical Engineering Journal, 2015, 259: 574580.
[11] Chang J S, Chou C, Chen S Y. Decolorization of azo dyes with immobilized Pseudomonas luteola[J]. Process Biochemistry, 2001, 36 (8/9): 757-763.
[12] Monbouquette H G, Ollis D F. Scanning microfluorimetry of Ca-Alginate immobilized Zymomonas Mobilis[J]. Nature Biotechnology, 1988, 6(9): 1076-1079.
[13] Chen K C, Huang C T. Effects of the growth of Trichosporon cutaneum in calcium alginate gel beads upon bead structure and oxygen transfer characteristics[J]. Enzyme and Microbial Technology, 1988, 10(5): 284-292.
[14] 孙舒婧. 碳纳米管修饰电极对生化出水的降解研究[D]. 上海: 上海交通大学, 2011.
[15] 吴文菲, 刘波, 李红军, 等. pH、盐度对微生物还原硫酸盐的影响研究[J]. 环境工程学报, 2011, 5(11): 2527-2531.
[16] Moreno-Garrido I. Microalgae immobilization: Current techniques and uses[J]. Bioresource Technology, 2008, 99(10): 3949-3964.
[17] 毛雪慧, 徐明芳, 刘辉, 等. 光合细菌固定化及其处理含油废水的研究[J]. 农业环境科学学报, 2009, 28(7): 1494-1499.
[18] 刘双江, 杨惠芳, 周培瑾, 等. 固定化光合细菌处理豆制品废水产氢研究[J]. 环境科学, 1995, 16(1): 42-44.
[19] Loh K C, Chung T S, Ang W F. Immobilized-cell membrane bioreactor for high-strength phenol wastewater[J]. Journal of Environmental Chemical Engineering, 2000, 126(1): 75-79.
[20] Wu K Y A, Wisecarver K D. Cell Immobilization using PVA cross-linked with boric acid[J]. Biotechnology and Bioengineering, 1992, 39(4): 447-449.
[21] 薛高尚, 胡丽娟, 田云, 等. 微生物修复技术在重金属污染治理中的研究进展[J]. 中国农学通报, 2012, 28(11): 266-271.
[22] 毛雪慧. 光合红螺菌(RhodosPirillaceae)固定化及其对废水处理的研究[D]. 广州: 暨南大学, 2009.
[23] 贠妮, 袁凤英, 白红娟, 等. 固定化沼泽红假单胞菌去除Pb2+的研究[J]. 山西化工, 2006, 26(5): 10-13.
[24] 白红娟, 张肇铭, 李保珍, 等. 固定化球形红细菌去除镉的动力学及其与质粒的关系[J]. 应用与环境生物学报, 2008, 14(2): 249-252.
[25] Feng Youzhi, Yu Yongchang, Wang Yiming, et al. Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus[J]. Current Microbiology, 2007, 55(5): 402-408.
[26] 牛志卿, 吴国庆, 张琳, 等. 固定化紫色非硫光合细菌降解活性艳红X-3B的研究[J]. 环境科学, 1994, 15(5): 49-52.
[27] 王兰, 廖丽华. 光合细菌固定化及对养殖水净化的研究[J]. 微生物学杂志, 2005, 25(3): 50-53.
[28] Zhang Jian, Zhang Wenxue, Li Shunzhou, et al. A two-step fermentation of distillers' grains using Trichoderma viride and Rhodopseudomonas palustris for fish feed[J]. Bioprocess and Biosystems Engineering, 2013, 36(10): 1435-1443.
[29] Hargreaves J A. Photosynthetic suspended-growth systems in aquaculture[J]. Aquacultural Engineering, 2006, 34(3): 344-363.
[30] 童毅. 光合细菌配合UASB处理高盐度有机废水的研究[J]. 青岛理工大学学报, 2010, 31(3): 69-73.
[31] 回进, 张凤君, 李亚东, 等. 水库底泥污染物释放模拟研究[J]. 辽宁科技大学学报, 2011, 34(5): 486-489.
[32] 张坤. 污染底泥对上覆水体水质影响研究[D]. 上海: 上海大学, 2011.
[33] 张晓辉, 孙洪光, 黄根华, 等. 海洋倾倒前疏浚底泥的去污染技术[J]. 热带海洋学报, 2010, 29(1): 15-19.
[34] 刘成. 生物促生剂联合微生物菌剂修复城市黑臭河道底泥实验研究[D]. 南宁: 广西大学, 2012.
[35] Beolchini F, Dell'Anno A, De Propris L, et al. Autoand het erotroophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals[J]. Chemosphere, 2009, 74(10): 1321-1326.
[36] Fabiano M, Marrale D, Misic C. Bacteria and organic matter dynamics during a bioremediation treatment of organic-rich harbour sediments[J]. Marine Pollution Bulletin, 2003, 46(9): 1164-1173
[37] Rocchetti L, Dell'Anno A, Beolchini F, et al. Changes of bacterial diversity during anaerobic bioremediation of harbour sediments[J]. Journal of Biotechnology, 2010, 150: 222-223.
[38] 周树礼. 以光合细菌为主的生物修复受损水生态系统研究[D]. 昆明: 昆明理工大学, 2007. |