1 |
吴娜娜, 钱虹, 郑璐, 等. 超声强化三维电极/电-Fenton处理孔雀石绿印染废水[J]. 水处理技术, 2018, 44 (4): 116- 121.
URL
|
2 |
Liew R K , Azwar E , Yek P N Y , et al. Microwave pyrolysis with KOH/NaOH mixture activation:A new approach to produce micro-mesopo-rous activated carbon for textile dye adsorption[J]. Bioresource Tech-nology, 2018, 266:1- 10.
doi: 10.1016/j.biortech.2018.06.051
|
3 |
杨晶, 黄瑞敏, 谢春生, 等. 负载型纳米CuO/MnO2催化剂的制备及催化氧化深度处理印染废水[J]. 环境工程学报, 2018, 12 (1): 34- 40.
URL
|
4 |
李暮, 钱飞跃, 李欣珏, 等. 印染废水生化出水中有机污染物特性及在硫酸镁混凝过程中的去除行为[J]. 环境化学, 2012, 31 (1): 88- 93.
URL
|
5 |
Zhang B , You H , Wang F , et al. Influence of nickel incorporation on the structure and catalytic behavior of Cu-catalyst for heterogeneous catalytic wet peroxide oxidation of quinoline under microwave irradia-tion[J]. Catalysis Communications, 2017, 88:56- 59.
doi: 10.1016/j.catcom.2016.09.032
|
6 |
杨中喆.微波强化催化湿式H2O2氧化深度处理煤化工废水[D].哈尔滨:哈尔滨工业大学, 2016.
URL
|
7 |
Kao C M , Chou M S , Fang W , et al. Regulating colored textile waste-water by 3/31 wavelength ADMI methods in Taiwan[J]. Chemosphere, 2001, 44 (5): 1055- 1063.
doi: 10.1016/S0045-6535(00)00502-6
|
8 |
Zhang B , You H , Yang Z , et al. A highly active bimetallic oxide ca-talyst supported on γ-Al2O3/TiO2 for catalytic wet peroxide oxidation of quinoline solutions under microwave irradiation[J]. RSC Advan-ces, 2016, 6 (70): 66027- 66036.
doi: 10.1039/C6RA08576H
|
9 |
Zazo J A , Pliego G , García-Munoz P , et al. UV-LED assisted cataly-tic wet peroxide oxidation with a Fe(Ⅱ)-Fe(Ⅲ)/activated carbon catalyst[J]. Applied Catalysis B:Environmental, 2016, 192:350- 356.
doi: 10.1016/j.apcatb.2016.04.010
|
10 |
Zhang B , You H , Wang F . Microwave-enhanced catalytic wet pero-xide oxidation of quinoline:the influence of pH and H2O2 dosage and identification of reactive oxygen species[J]. RSC Advances, 2017, 7 (24): 14769- 14775.
doi: 10.1039/C7RA01350G
|
11 |
Zhang Z , Yu F , Huang L , et al. Confirmation of hydroxyl radicals (·OH) generated in the presence of TiO2 supported on AC under microwave irradiation[J]. Journal of Hazardous Materials, 2014, 278:152- 157.
doi: 10.1016/j.jhazmat.2014.05.064
|
12 |
Ahmed A B , Jibril B , Danwittayakul S , et al. Microwave-enhanced degradation of phenol over Ni-loaded ZnO nanorods catalyst[J]. Applied Catalysis B:Environmental, 2014, 156/157:456- 465.
doi: 10.1016/j.apcatb.2014.03.032
|
13 |
Temel N K , Sokmen M . New catalyst systems for the degradation of chlorophenols[J]. Desalination, 2011, 281:209- 214.
doi: 10.1016/j.desal.2011.07.066
|
14 |
Pan W , Zhang G , Zheng T , et al. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation[J]. RSC Advances, 2015, 5 (34): 27043- 27051.
doi: 10.1039/C4RA14516J
|
15 |
Yan Y , Wu X , Zhang H . Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor[J]. Separation and Puri-fication Technology, 2016, 171:52- 61.
doi: 10.1016/j.seppur.2016.06.047
|
16 |
Ye W , Zhao B , Gao H , et al. Preparation of highly efficient and stable Fe, Zn, Al-pillared montmorillonite as heterogeneous catalyst for ca-talytic wet peroxide oxidation of Orange Ⅱ[J]. Journal of Porous Materials, 2016, 23 (2): 301- 310.
doi: 10.1007/s10934-015-0082-y
|
17 |
Georgi A , Velasco Polo M , Crincoli K , et al. Accelerated catalytic fenton reaction with traces of iron:an Fe-Pd-multicatalysis app-roach[J]. Environmental Science & Technology, 2016, 50 (11): 5882- 5891.
URL
|
18 |
Zhao S , Duan Y , Tan H , et al. Migration and emission characteristi-cs of trace elements in a 660 MW coal-fired power plant of China[J]. Energy & Fuels, 2016, 30 (7): 5937- 5944.
URL
|
19 |
Ge X , Wu Z , Wu Z , et al. Microwave-assisted modification of activa-ted carbon with ammonia for efficient pyrene adsorption[J]. Journal of Industrial and Engineering Chemistry, 2016, 39:27- 36.
doi: 10.1016/j.jiec.2016.05.003
|