1 |
Wang Nannan , Zheng Tong , Zhang Guangshan , et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4 (1): 762- 787.
doi: 10.1016/j.jece.2015.12.016
|
2 |
Klamerth N , Malato S , Aguera A , et al. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection[J]. Environmental Science & Technology, 2012, 46 (5): 2885- 2892.
URL
|
3 |
Wang Zhaohui , Bush R T , Liu Jianshe . Arsenic (Ⅲ) and iron(Ⅱ) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands[J]. Chemosphere, 2013, 93 (9): 1936- 1941.
doi: 10.1016/j.chemosphere.2013.06.076
URL
|
4 |
Bokare A D , Choi W . Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275, 121- 135.
doi: 10.1016/j.jhazmat.2014.04.054
URL
|
5 |
Venny G S , Ng H K . Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon(PAH)-contaminated soils[J]. Chemical Engineering Journal, 2012, 180, 1- 8.
doi: 10.1016/j.cej.2011.10.082
URL
|
6 |
Lipczynska-Kochany E , Kochany J . Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH[J]. Chemosphere, 2008, 73 (5): 745- 750.
doi: 10.1016/j.chemosphere.2008.06.028
URL
|
7 |
Munoz M , De Pedro Z M , Casas J A , et al. Preparation of magnetitebased catalysts and their application in heterogeneous Fenton oxidation: A review[J]. Applied Catalysis B: Environmental, 2015, 176/177, 249- 265.
doi: 10.1016/j.apcatb.2015.04.003
|
8 |
Lin Zhirong , Zhao Ling , Dong Yuanhua . Effects of low molecular weight organic acids and fulvic acid on 2, 4, 4'-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fentonlike reaction[J]. Chemical Engineering Journal, 2017, 326, 201- 209.
doi: 10.1016/j.cej.2017.05.112
|
9 |
Zhong Yuanhong , Liang Xiaoliang , Zhong Yin , et al. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products[J]. Water Research, 2012, 46 (15): 4633- 4644.
doi: 10.1016/j.watres.2012.06.025
URL
|
10 |
Sun Fuwei , Liu Haibo , Wang Hanlin , et al. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9[J]. Science of The Total Environment, 2020, 698, 134293.
doi: 10.1016/j.scitotenv.2019.134293
|
11 |
Zhao Linghui , Chen Yufan , Liu Yanxia , et al. Enhanced degradation of chloramphenicol at alkaline conditions by S(-Ⅱ) assisted heterogeneous Fenton-like reactions using pyrite[J]. Chemosphere, 2017, 188, 557- 566.
doi: 10.1016/j.chemosphere.2017.09.019
|
12 |
Garrido-Ramírez E G , Theng B K G , Mora M L . Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review[J]. Applied Clay Science, 2010, 47 (3/4): 182- 192.
URL
|
13 |
Lin Zhirong , Ma Xiaohong , Zhao Ling , et al. Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction[J]. Chemosphere, 2014, 101, 15- 20.
doi: 10.1016/j.chemosphere.2013.11.063
URL
|
14 |
De Luca A , Dantas R F , Esplugas S . Assessment of iron chelates efficiency for photo-Fenton at neutral pH[J]. Water Research, 2014, 61, 232- 242.
doi: 10.1016/j.watres.2014.05.033
URL
|
15 |
Miralles-Cuevas S , Oller I , Perez J A S , et al. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photoFenton using two different iron complexes at neutral pH[J]. Water Research, 2014, 64, 23- 31.
doi: 10.1016/j.watres.2014.06.032
URL
|
16 |
Zhang Yongzhi , Liu Junjie , Pei Jingjing , et al. Performance evaluation of different air distribution systems in an aircraft cabin mockup[J]. Aerospace Science and Technology, 2017, 70, 359- 366.
doi: 10.1016/j.ast.2017.08.009
|
17 |
Ruales-Lonfat C , Barona J F , Sienkiewicz A , et al. Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH[J]. Applied Catalysis B: Environmental, 2016, 180, 379- 390.
doi: 10.1016/j.apcatb.2015.06.030
|
18 |
Villegas-Guzman P , Giannakis S , Torres-Palma R A , et al. Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids[J]. Applied Catalysis B: Environmental, 2017, 205, 219- 227.
doi: 10.1016/j.apcatb.2016.12.021
|
19 |
Sun Shengpeng , Zeng Xia , Li Chun , et al. Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid[J]. Chemical Engineering Journal, 2014, 244, 44- 49.
doi: 10.1016/j.cej.2014.01.039
URL
|
20 |
Sun Hongwei , Xie Guihong , He Di , et al. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling[J]. Applied Catalysis B: Environmental, 2020, 267, 118383.
doi: 10.1016/j.apcatb.2019.118383
|
21 |
Ortiz De La Plata G B , Alfano O M , Cassano A E . Decomposition of 2-chlorophenol employing goethite as Fenton catalyst.Ⅰ. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions[J]. Applied Catalysis B: Environmental, 2010, 95 (1/2): 1- 13.
URL
|
22 |
Clarizia L , Russo D , Di Somma I , et al. Homogeneous photo-Fenton processes at near neutral pH: A review[J]. Applied Catalysis B: Environmental, 2017, 209, 358- 371.
doi: 10.1016/j.apcatb.2017.03.011
|
23 |
Khalid N R , Majid A , Tahir M B , et al. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review[J]. Ceramics International, 2017, 43 (17): 14552- 14571.
doi: 10.1016/j.ceramint.2017.08.143
|
24 |
Semiāo M A , Haminiuk C W I , Maciel G M . Residual diatomaceous earth as a potential and cost effective biosorbent of the azo textile dye Reactive Blue 160[J]. Journal of Environmental Chemical Engineering, 2020, 8 (1): 103617.
doi: 10.1016/j.jece.2019.103617
|
25 |
Tireli A A , Guimaraes I R , Terra J C S , et al. Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation[J]. Environ. Sci. Pollut. Res. Int., 2015, 22 (2): 870- 881.
doi: 10.1007/s11356-014-2973-x
|
26 |
He Yi , Jiang Debin , Jiang Deyi , et al. Evaluation of MnO2-templated iron oxide-coated diatomites for their catalytic performance in heterogeneous photo Fenton-like system[J]. J. Hazard. Mater., 2018, 344, 230- 240.
doi: 10.1016/j.jhazmat.2017.10.018
|
27 |
Guo Ting , Wang Kai , Zhang Gaoke , et al. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance[J]. Applied Surface Science, 2019, 469, 331- 339.
doi: 10.1016/j.apsusc.2018.10.183
|
28 |
Wang Feifei , Yu Xiaolin , Ge Maofa , et al. Facile self-assembly synthesis of γ-Fe2O3/graphene oxide for enhanced photo-Fenton reaction[J]. Environmental Pollution, 2019, 248, 229- 237.
doi: 10.1016/j.envpol.2019.01.018
|
29 |
Boruah P K , Sharma B , Karbhal I , et al. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation[J]. J. Hazard. Mater., 2017, 325, 90- 100.
doi: 10.1016/j.jhazmat.2016.11.023
|
30 |
Yan Jingchun , Yang Lei , Qian Linbo , et al. Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal[J]. Environmental Pollution, 2020, 261, 114020.
doi: 10.1016/j.envpol.2020.114020
|
31 |
Pirsahe M , Moradi S , Shahlaei M , et al. A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water[J]. Journal of Cleaner Production, 2019, 209, 1523- 1532.
doi: 10.1016/j.jclepro.2018.11.175
|
32 |
Wu Jinhua , Lin Guanghui , Li Ping , et al. Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2[J]. Water Sci. Technol., 2013, 67 (3): 572- 578.
doi: 10.2166/wst.2012.596
|
33 |
Pachamuthu M P , Karthikeyan S , Maheswari R , et al. Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1[J]. Applied Surface Science, 2017, 393, 67- 73.
doi: 10.1016/j.apsusc.2016.09.162
|
34 |
Zhou Peng , Li Wenshu , Zhang Jing , et al. Removal of Rhodamine B during the corrosion of zero valent tungsten via a tungsten speciescatalyzed Fenton-like system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 202- 209.
doi: 10.1016/j.jtice.2019.04.023
|
35 |
Zang Chengjie , Yu Kaifeng , Hu Shiyu , et al. Adsorption-depended Fenton-like reaction kinetics in CeO2-H2O2 system for salicylic acid degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 456- 463.
doi: 10.1016/j.colsurfa.2018.05.100
|
36 |
Yao Yunjin , Chen Hao , Lian Chao , et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials, 2016, 314, 129- 139.
doi: 10.1016/j.jhazmat.2016.03.089
|
37 |
Kim E J , Oh D , Lee C S , et al. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior[J]. Catalysis Today, 2017, 282, 71- 76.
doi: 10.1016/j.cattod.2016.03.034
|
38 |
Cheng Min , Zeng Guangming , Huang Danlian , et al. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system[J]. Water Research, 2018, 138, 7- 18.
doi: 10.1016/j.watres.2018.03.022
|
39 |
Zhang Yuting , Liu Cao , Xu Bingbing , et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: Combination of adsorption and catalysis oxidation[J]. Applied Catalysis B: Environmental, 2016, 199, 447- 457.
doi: 10.1016/j.apcatb.2016.06.003
|
40 |
Gan Guoqiang , Liu Juan , Zhu Zhixi , et al. A novel magnetic nanoscaled Fe3O4/CeO2 composite prepared by oxidation-precipitation process and its application for degradation of orange G in aqueous solution as Fenton-like heterogeneous catalyst[J]. Chemosphere, 2017, 168, 254- 263.
doi: 10.1016/j.chemosphere.2016.10.064
|
41 |
Zheng Chunming , Yang Chuanwu , Cheng Xiangzhi , et al. Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon[J]. Separation and Purification Technology, 2017, 189, 357- 365.
doi: 10.1016/j.seppur.2017.08.015
|
42 |
Zhang L , Tu J , Lyu L , et al. Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres[J]. Applied Catalysis B: Environmental, 2016, 181, 561- 569.
doi: 10.1016/j.apcatb.2015.08.029
|
43 |
Wang Huihui , Zhang Lili , Hu Chun , et al. Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions[J]. Chemical Engineering Journal, 2018, 332, 572- 581.
doi: 10.1016/j.cej.2017.09.058
|
44 |
Zhang X , Ding Y , Tang H , et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236 (1): 251- 262.
URL
|
45 |
Zhang N , Tsang E P , Chen J , et al. Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts[J]. J. Colloid Interface. Sci., 2020, 558, 163- 172.
doi: 10.1016/j.jcis.2019.09.079
|
46 |
Phan T T N , Nikoloski A N , Bahri P A , et al. Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light[J]. Journal of Industrial and Engineering Chemistry, 2018, 61, 53- 64.
doi: 10.1016/j.jiec.2017.11.046
|
47 |
Zhang Nuanqin , Xue Chengjie , Wang Kuang , et al. Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts[J]. Chemical Engineering Journal, 2020, 380 (2): 89- 91.
URL
|
48 |
Tang Juntao , Wang Jianliang . Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions[J]. Chemosphere, 2020, 241, 125002.
doi: 10.1016/j.chemosphere.2019.125002
|
49 |
Wang Z , Liu Q , Yang F , et al. Accelerated oxidation of 2, 4, 6-trichlorophenol in Cu(Ⅱ)/H2O2/Cl- system: A unique "halotolerant" Fenton-like process?[J]. Environment International, 2019, 132, 105128.
doi: 10.1016/j.envint.2019.105128
|
50 |
Lee H , Lee H J , Sedlak D L , et al. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide[J]. Chemosphere, 2013, 92 (6): 652- 658.
doi: 10.1016/j.chemosphere.2013.01.073
URL
|
51 |
Hammouda S B , Zhao F , Safaei Z , et al. Reactivity of novel Ceria-Perovskite composites CeO2-LaMO3(MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant 'Bisphenol F': Characterization, kinetic and mechanism studies[J]. Applied Catalysis B: Environmental, 2017, 218, 119- 136.
doi: 10.1016/j.apcatb.2017.06.047
|