1 |
周怀东,彭文启.水污染与水环境修复[M].北京:化学工业出版社,2005:1-5.
|
2 |
KURNIAWAN T A, CHAN G Y S, LO W H,et al.Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 2006, 118(1/2):83-98. doi: 10.1016/j.cej.2006.01.015
|
3 |
王在兴.废水中的重金属处理方法分析[J].环境与发展,2019,31(1):63,65.
|
|
WANG Zaixing.Analysis of heavy metal treatment methods in wastewater[J].Environment and Development,2019,31(1):63,65.
|
4 |
LIU Hong, GROT S, LOGAN B E.Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39(11):4317-4320. doi: 10.1021/es050244p
|
5 |
|
|
WANG Bo, GAO Guandao, LI Fengxiang,et al.Advance in application of microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1084-1092. doi: 10.1016/j.cej.2016.08.094
|
6 |
张存胜,崔凤杰,骆琳,等.微生物电解池制氢技术研究进展[J].现代化工,2015,35(12):48-51.
|
|
ZHANG Cunsheng, CUI Fengjie, LUO Lin,et al.Advance in hydrogen production from microbial electrolysis cell[J].Modern Chemical Industry,2015,35(12):48-51.
|
7 |
WRANA N, SPARLING R, CICEK N,et al.Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis[J]. Journal of Cleaner Production, 2010, 18:S105-S111. doi: 10.1016/j.jclepro.2010.06.018
|
8 |
CALL D, LOGAN B E.Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane[J]. Environmental Science & Technology, 2008, 42(9):3401-3406. doi: 10.1021/es8001822
|
9 |
MATHURIYA A S, YAKHMI J V.Microbial fuel cells to recover heavy metals[J]. Environmental Chemistry Letters, 2014, 12(4):483-494. doi: 10.1007/s10311-014-0474-2
|
10 |
WANG Hanwen, WANG Hongbo, GAO Changfei,et al.Enhanced removal of copper by electroflocculation and electroreduction in a novel bioelectrochemical system assisted microelectrolysis[J]. Bioresource Technology, 2020, 297:122507. doi: 10.1016/j.biortech.2019.122507
|
11 |
TAO Huchun, ZHANG Lijuan, GAO Zhuyou,et al.Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor[J]. Bioresource Technology, 2011, 102(22):10334-10339. doi: 10.1016/j.biortech.2011.08.116
|
12 |
CHOI C, HU Naixu.The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell[J]. Bioresource Technology, 2013, 133:589-598. doi: 10.1016/j.biortech.2013.01.143
|
13 |
CHOI C, CUI Yufeng.Recovery of silver from wastewater coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2012, 107:522-525. doi: 10.1016/j.biortech.2011.12.058
|
14 |
ZHANG Yifeng, ANGELIDAKI I.Microbial electrolysis cells turning to be versatile technology:Recent advances and future challenges[J]. Water Research, 2014, 56:11-25. doi: 10.1016/j.watres.2014.02.031
|
15 |
CHEN Yiran, SHEN Jingya, HUANG Liping,et al.Enhanced Cd(Ⅱ) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO 3 [J]. International Journal of Hydrogen Energy, 2016, 41(31):13368-13379. doi: 10.1016/j.ijhydene.2016.06.200
|
16 |
LI Meng, ZHOU Shaoqi, XU Yuting.Performance of Pb(Ⅱ) reduction on different cathodes of microbial electrolysis cell driven by Cr(Ⅵ)-reduced microbial fuel cell[J]. Journal of Power Sources, 2019, 418:1-10. doi: 10.1016/j.jpowsour.2019.02.032
|
17 |
NANCHARAIAH Y V, MOHAN S V, LENS P N L.Metals removal and recovery in bioelectrochemical systems:A review[J]. Bioresource Technology, 2015, 195:102-114. doi: 10.1016/j.tibtech.2015.11.003
|
18 |
WANG Heming, REN Z J.A comprehensive review of microbial electrochemical systems as a platform technology[J]. Biotechnology Advances, 2013, 31(8):1796-1807. doi: 10.1016/j.biotechadv.2013.10.001
|
19 |
LI Yan, WU Yining, LIU Bingchuan,et al.Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system[J]. Bioresource Technology, 2015, 192:238-246. doi: 10.1016/j.biortech.2015.05.030
|
20 |
MODIN O, WANG Xiaofei, WU Xue,et al.Bioelectrochemical recovery of Cu,Pb,Cd,and Zn from dilute solutions[J]. Journal of Hazardous Materials, 2012, 235/236:291-297. doi: 10.1016/j.jhazmat.2012.07.058
|
21 |
HUANG Liping, YAO Binglin, WU Dan,et al.Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-Microbial electrolysis cell systems[J]. Journal of Power Sources, 2014, 259:54-64. doi: 10.1016/j.jpowsour.2014.02.061
|
22 |
JIANG Linjie, HUANG Liping, SUN Yuliang.Recovery of flakey cobalt from aqueous Co(Ⅱ) with simultaneous hydrogen production in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2014, 39(2):654-663. doi: 10.1016/j.ijhydene.2013.10.112
|
23 |
TAO Huchun, LEI Tao, SHI Gang,et al.Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis[J]. Journal of Hazardous Materials, 2014, 264:1-7. doi: 10.1016/j.jhazmat.2013.10.057
|
24 |
CAI Wenfang, GENG Deli, WANG Yunhai.Assessment of cathode materials for Ni(Ⅱ) reduction in microbial electrolysis cells[J]. RSC Advances, 2016, 6(38):31732-31738. doi: 10.1039/c6ra02082h
|
25 |
COLANTONIO N, KIM Y.Cadmium(Ⅱ) removal mechanisms in microbial electrolysis cells[J]. Journal of Hazardous Materials, 2016, 311:134-141. doi: 10.1016/j.jhazmat.2016.02.062
|
26 |
LI Jiannan, YU Yanling, CHEN Dahong,et al.Hydrophilic graphene aerogel anodes enhance the performance of microbial electrochemical systems[J]. Bioresource Technology, 2020, 304:122907. doi: 10.1016/j.biortech.2020.122907
|
27 |
LI Yan, LU Anhuai, DING Hongrui,et al.Cr(Ⅵ) reduction at rutile-catalyzed cathode in microbial fuel cells[J]. Electrochemistry Communications, 2009, 11(7):1496-1499. doi: 10.1016/j.elecom.2009.05.039
|
28 |
QIN Bangyu, LUO Haiping, LIU Guangli,et al.Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresource Technology, 2012, 121:458-461. doi: 10.1016/j.biortech.2012.06.068
|
29 |
LUO Haiping, LIU Guangli, ZHANG Renduo,et al.Heavy metal recovery combined with H 2 production from artificial acid mine drainage using the microbial electrolysis cell[J]. Journal of Hazardous Materials, 2014, 270:153-159. doi: 10.1016/j.jhazmat.2014.01.050
|
30 |
SÁNCHEZ C, DESSÌ P, DUFFY M,et al.Microbial electrochemical technologies:Electronic circuitry and characterization tools[J]. Biosensors and Bioelectronics, 2020, 150:111884. doi: 10.1016/j.bios.2019.111884
|
31 |
HE Weihua, DONG Yue, LI Chao,et al.Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant[J]. Water Research, 2019, 155:372-380. doi: 10.1016/j.watres.2019.01.062
|
32 |
SELEMBO P A, MERRILL M D, LOGAN B E.The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells[J]. Journal of Power Sources, 2009, 190(2):271-278. doi: 10.1016/j.jpowsour.2008.12.144
|
33 |
ZHANG Yimin, MERRILL M D, LOGAN B E.The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(21):12020-12028. doi: 10.1016/j.ijhydene.2010.08.064
|
34 |
CALL D F, MERRILL M D, LOGAN B E.High surface area stainless steel brushes as cathodes in microbial electrolysis cells[J]. Environmental Science & Technology, 2009, 43(6):2179-2183. doi: 10.1021/es803074x
|
35 |
KUMARG, BAKONYI P, ZHEN Guangyin,et al.Microbial electrochemical systems for sustainable biohydrogen production:Surveying the experiences from a start-up viewpoint[J]. Renewable and Sustainable Energy Reviews, 2017, 70:589-597. doi: 10.1016/j.rser.2016.11.107
|
36 |
YU J, KIM S, KWON O S.Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(7):911-923. doi: 10.1007/s10295-019-02182-6
|
37 |
YANG Qiuyu, ZHAO Nan, WANG Han,et al.Electrochemical and biochemical profiling of the enhanced hydrogenotrophic denitrification through cathode strengthening using bioelectrochemical system(BES)[J]. Chemical Engineering Journal, 2020, 381:122686. doi: 10.1016/j.cej.2019.122686
|
38 |
LUO Haiping, FU Shiyu, LIU Guangli,et al.Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells[J]. Bioresource Technology, 2014, 167:462-468. doi: 10.1016/j.biortech.2014.06.058
|
39 |
LIU Shujuan, FENG Yujie, NIU Jiaojiao,et al.A novel single chamber vertical baffle flow biocathode microbial electrochemical system with microbial separator[J]. Bioresource Technology, 2019, 294:122236. doi: 10.1016/j.biortech.2019.122236
|
40 |
MOGHISEH Z, REZAEE A, GHANATI F,et al.Metabolic activity and pathway study of aspirin biodegradation using a microbial electrochemical system supplied by an alternating current[J]. Chemosphere, 2019, 232:35-44. doi: 10.1016/j.chemosphere.2019.05.186
|
41 |
SHEN Jingya, SUN Yuliang, HUANG Liping,et al.Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(Ⅱ) and Cu(Ⅱ) removal[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6):1084-1095. doi: 10.1007/s11783-015-0805-y
|
42 |
DONG Yue, HE Weihua, LIANG Dandan,et al.Operation strategy of cubic-meter scale microbial electrochemistry system in a municipal wastewater treatment plant[J]. Journal of Power Sources, 2019, 441:227124. doi: 10.1016/j.jpowsour.2019.227124
|
43 |
LI Xiao, ZENG Cuiping, LU Yaobin,et al.Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell[J]. Bioresource Technology, 2019, 274:403-409. doi: 10.1016/j.biortech.2018.12.002
|
44 |
RAGO L, ZECCHIN S, MARZORATI S,et al.A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells[J]. Bioelectrochemistry, 2018, 120:18-26. doi: 10.1016/j.bioelechem.2017.11.005
|
45 |
安秋颖,郭璐露,黄泽波,等.含铬污水的生物修复技术研究现状及展望[J].工业水处理.
|
|
AN Qiuying, GUO Lulu, HUANG Zebo, CHEN Zigui, ZHAO Ran. Research status and prospect of bio-remediation technology for chromium-containing wastewater[J]. Industrial Water Treatment.
|
46 |
TANDUKAR M, TEZEL U, PAVLOSTATHIS S G.Biological chromium(Ⅵ) reduction in microbial fuel cell:A three in one approach[J]. Proceedings of the Water Environment Federation, 2009(17):527-535. doi: 10.2175/193864709793955744
|
47 |
HUANG Liping, CHEN Jingwen, QUAN Xie,et al.Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8):937-945. doi: 10.1007/s00449-010-0417-7
|
48 |
|
|
ZHOU Ruikang.Quantitative evaluation of the effects of different cathode materials on Cd(Ⅱ)-reduced microbial electrolysis cells[D].Guangzhou:South China University of Technology, 2020. doi: 10.1016/j.biortech.2020.123198
|
49 |
|
|
ZHAO Xin, WU Yining, JIN Min.Nickel efficiency removal in single-chamber microbial electrolysis cells[J]. Chinese Journal of Environmental Engineering, 2017, 11(5):2792-2796. doi: 10.12030/j.cjee.201511007
|
50 |
HUANG Liping, LI Tianchi, LIU Chuan,et al.Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells[J]. Bioresource Technology, 2013, 128:539-546. doi: 10.1016/j.biortech.2012.11.011
|
51 |
WANG Zejie,LIM B, CHOI C.Removal of Hg 2+ as an electron acceptor coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(10):6304-6307. doi: 10.1016/j.biortech.2011.02.027
|
52 |
ZHANG Baogang, ZHOU Shungui, ZHAO Huazhang,et al.Factors affecting the performance of microbial fuel cells for sulfide and vanadium(Ⅴ) treatment[J]. Bioprocess and Biosystems Engineering, 2010, 33(2):187-194. doi: 10.1007/s00449-009-0312-2
|
53 |
毛艳萍.微生物燃料电池中硫化物氧化和生物阴极的研究[D].上海:华东理工大学,2010.
|
|
MAO Yanping.Study on sulfide oxidation and biological cathode in microbial fuel cell[D].Shanghai:East China University of Science and Technology,2010.
|
54 |
LI Zhongjian, ZHANG Xingwang, LEI Lecheng.Electricity production during the treatment of real electroplating wastewater containing Cr 6+ using microbial fuel cell[J]. Process Biochemistry, 2008, 43(12):1352-1358. doi: 10.1016/j.procbio.2008.08.005
|
55 |
WANG Qiang, HUANG Liping, YU Hongtao,et al.Assessment of five different cathode materials for Co(Ⅱ) reduction with simultaneous hydrogen evolution in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2015, 40(1):184-196. doi: 10.1016/j.ijhydene.2014.11.014
|
56 |
ABOURACHED C, CATAL T, LIU Hong.Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J]. Water Research, 2014, 51:228-233. doi: 10.1016/j.watres.2013.10.062
|
57 |
Natalie C B E. Heavy metal removal from wastewater using microbial electrolysis cells[D].Hamilton:McMaster University,2016.
|
58 |
PANDA G C, DAS S K, BANDOPADHYAY T S,et al.Adsorption of nickel on husk of Lathyrus sativus:Behavior and binding mechanism[J]. Colloids and Surfaces B:Biointerfaces, 2007, 57(2):135-142. doi: 10.1016/j.colsurfb.2007.01.022
|
59 |
CHOI C, HU Naixu,LIM B.Cadmium recovery by coupling double microbial fuel cells[J]. Bioresource Technology, 2014, 170:361-369. doi: 10.1016/j.biortech.2014.07.087
|
60 |
LIU Liang, YUAN Yong, LI Fangbai,et al.In-situ Cr(Ⅵ) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria[J]. Bioresource Technology, 2011, 102(3):2468-2473. doi: 10.1016/j.biortech.2010.11.013
|