1 |
刘汝鹏,张震,孙翠珍,等. 非均相催化臭氧化水中药物与个人护理品的研究进展[J]. 精细化工,2022,39(3):469-479.
|
|
LIU Rupeng, ZHANG Zhen, SUN Cuizhen,et al. Research progress of oxidation of pharmaceuticals and personal care products in water by heterogeneous catalytic ozonation[J]. Fine Chemicals,2022,39(3):469-479.
|
2 |
刘汝鹏,张震,宋依辉,等. 基于臭氧的复合工艺处理医药废水研究进展[J]. 工业水处理,2022,42(5):41-49.
|
|
LIU Rupeng, ZHANG Zhen, SONG Yihui,et al. Research progress in pharmaceutical wastewater treatment by ozone-based combined technology[J]. Industrial Water Treatment,2022,42(5):41-49.
|
3 |
陈智超,陈坤,杨承峰,等. 磁混凝工艺在山东某污水处理厂提标改造中的应用[J]. 工业水处理,2023,43(3):181-185.
|
|
CHEN Zhichao, CHEN Kun, YANG Chengfeng,et al. Application of magnetic coagulation process in upgrading and renovation of a sewage treatment plant in Shandong[J]. Industrial Water Treatment,2023,43(3):181-185.
|
4 |
刘汝鹏,宋依辉,陈飞勇,等. 水动力传质在臭氧氧化水处理工艺的研究进展[J]. 净水技术,2023,42(2):14-22.
|
|
LIU Rupeng, SONG Yihui, CHEN Feiyong,et al. Research progress of hydrodynamic mass transfer in ozonation water treatment process[J]. Water Purification Technology,2023,42(2):14-22.
|
5 |
谭凤训,陈永凯,王榕,等. g-C3N4/PDS光催化降解阿特拉津的效能及机理研究[J]. 中国给水排水,2023,39(1):91-98.
|
|
TAN Fengxun, CHEN Yongkai, WANG Rong,et al. Performance and mechanism of g-C3N4/PDS for photocatalytic degradation of atrazine[J]. China Water & Wastewater,2023,39(1):91-98.
|
6 |
刘静,杨璐冰,李晨,等. ML-WO3/TiO2异质结的制备及其对罗丹明B的光催化降解[J]. 精细化工,2022,39(12):2456-2466.
|
|
LIU Jing, YANG Lubing, LI Chen,et al. Preparation of ML-WO3/TiO2 heterojunction and its photocatalytic degradation of rhodamine B[J]. Fine Chemicals,2022,39(12):2456-2466.
|
7 |
张震,刘汝鹏,孙翠珍,等. 铁基材料协同活化过硫酸盐研究进展[J]. 环境科学与技术,2022,45(9):169-180.
|
|
ZHANG Zhen, LIU Rupeng, SUN Cuizhen,et al. Adances in ferrous material synergistic activated persulfate[J]. Environmental Science & Technology,2022,45(9):169-180.
|
8 |
LENG Lijian, WEI Liang, XIONG Qin,et al. Use of microalgae based technology for the removal of antibiotics from wastewater:A review[J]. Chemosphere, 2020, 238:124680. doi: 10.1016/j.chemosphere.2019.124680
|
9 |
GUO Jiahua, SELBY K, BOXALL A B A. Effects of antibiotics on the growth and physiology of chlorophytes,cyanobacteria,and a diatom[J]. Archives of Environmental Contamination and Toxicology, 2016, 71(4):589-602. doi: 10.1007/s00244-016-0305-5
|
10 |
HOM-DIAZ A, JAÉN-GIL A, RODRÍGUEZ-MOZAZ S,et al. Insights into removal of antibiotics by selected microalgae( Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata)[J]. Algal Research, 2022, 61:102560. doi: 10.1016/j.algal.2021.102560
|
11 |
SANTAEUFEMIA S, TORRES E, MERA R,et al. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum [J]. Journal of Hazardous Materials, 2016, 320:315-325. doi: 10.1016/j.jhazmat.2016.08.042
|
12 |
WU Shuai, ZHANG Jingmiao, XIA Ao,et al. Microalgae cultivation for antibiotic oxytetracycline wastewater treatment[J]. Environmental Research, 2022, 214:113850. doi: 10.1016/j.envres.2022.113850
|
13 |
SONG Chunfeng, WEI Yanling, QIU Yiting,et al. Biodegradability and mechanism of florfenicol via Chlorella sp.UTEX1602 and L38:Experimental study[J]. Bioresource Technology, 2019, 272:529-534. doi: 10.1016/j.biortech.2018.10.080
|
14 |
XIE Peng, HO S H, PENG Jing,et al. Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products(PPCPs) residues and biodiesel production[J]. Science of the Total Environment, 2019, 688:253-261. doi: 10.1016/j.scitotenv.2019.06.062
|
15 |
XIONG Jiuqiang, KURADE M B, PATIL D V,et al. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater[J]. Algal Research, 2017, 25:54-61. doi: 10.1016/j.algal.2017.04.012
|
16 |
周楠,陈建秋,王晓,等. 氮磷营养调控对微藻去除抗生素的增效作用研究[J]. 水处理技术,2021,47(3):32-37.
|
|
ZHOU Nan, CHEN Jianqiu, WANG Xiao,et al. Study on the synergistic effect of nitrogen and phosphorus nutrition regulation on the antibiotic removal by microalgae[J]. Technology of Water Treatment,2021,47(3):32-37.
|
17 |
XIAO Guixing, CHEN Jianqiu, SHOW P L,et al. Evaluating the application of antibiotic treatment using algae-algae/activated sludge system[J]. Chemosphere, 2021, 282:130966. doi: 10.1016/j.chemosphere.2021.130966
|
18 |
ŻAK A, KOSAKOWSKA A. Cyanobacterial and microalgal bioactive compounds-the role of secondary metabolites in allelopathic interactions[J]. Oceanological and Hydrobiological Studies, 2016, 45(1):131-143. doi: 10.1515/ohs-2016-0013
|
19 |
LIU Yanhua, WANG Zhizhi, YAN Kun,et al. A new disposal method for systematically processing of ceftazidime:The intimate coupling UV/algae-algae treatment[J]. Chemical Engineering Journal, 2017, 314:152-159. doi: 10.1016/j.cej.2016.12.110
|
20 |
GUO Ruixin, CHEN Jianqiu. Application of alga-activated sludge combined system(AASCS) as a novel treatment to remove cephalosporins[J]. Chemical Engineering Journal, 2015, 260:550-556. doi: 10.1016/j.cej.2014.09.053
|
21 |
LEDER C,SUK M, LORENZ S,et al. Reducing environmental pollution by antibiotics through design for environmental degradation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(28):9358-9368. doi: 10.1021/acssuschemeng.1c02243
|
22 |
REDDY B, DUBEY S K. River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes:High throughput metagenomic approach[J]. Environmental Pollution, 2019, 246:443-451. doi: 10.1016/j.envpol.2018.12.022
|
23 |
LIU Lin, YU Xin, WU Daizhuo,et al. Antibiotic resistance gene profile in aerobic granular reactor under antibiotic stress:Can eukaryotic microalgae act as inhibiting factor?[J]. Environmental Pollution, 2022, 304:119221. doi: 10.1016/j.envpol.2022.119221
|
24 |
DU Yingxiang, ZHANG Shengnan, GUO Ruixin,et al. Understanding the algal contribution in combined UV-algae treatment to remove antibiotic cefradine[J]. RSC Advances, 2015, 5(74):59953-59959. doi: 10.1039/c5ra10806c
|
25 |
LI Haitao, PAN Yu, WANG Zhizhi,et al. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine[J]. RSC Advances, 2015, 5(122):100775-100782. doi: 10.1039/c5ra21508k
|
26 |
XIONG Jiuqiang, KURADE M B, JEON B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris [J]. Chemical Engineering Journal, 2017, 313:1251-1257. doi: 10.1016/j.cej.2016.11.017
|
27 |
XIONG Qian, HU Lixin, LIU Yousheng,et al. Microalgae-based technology for antibiotics removal:From mechanisms to application of innovational hybrid systems[J]. Environment International, 2021, 155:106594. doi: 10.1016/j.envint.2021.106594
|
28 |
KURITZ T, BOCANERA L V, RIVERA N S. Dechlorination of lindane by the cyanobacterium Anabaena sp.strain PCC7120 depends on the function of the nir operon[J]. Journal of Bacteriology, 1997, 179(10):3368-3370. doi: 10.1128/jb.179.10.3368-3370.1997
|
29 |
RATHOD J P, VIRA C, LALI A M,et al. Metabolic engineering of Chlamydomonas reinhardtii for enhanced β-carotene and lutein production[J]. Applied Biochemistry and Biotechnology, 2020, 190(4):1457-1469. doi: 10.1007/s12010-019-03194-9
|
30 |
余旭亚,贺赐安,赵鹏,等. 单针藻对4种抗生素的敏感性研究及无菌化处理[J]. 昆明理工大学学报:自然科学版,2012,37(4):68-71.
|
|
YU Xuya, HE Cian, ZHAO Peng,et al. Study on sensitivities of monoraphidium sp.to 4 antibiotics and its axenic processing[J].Journal of Kunming University of Science and Technology(Natural Science Edition),2012,37(4):68-71.
|
31 |
SHARMA L, SIEDLEWICZ G, PAZDRO K. The toxic effects of antibiotics on freshwater and marine photosynthetic microorganisms:State of the art[J]. Plants, 2021, 10(3):591. doi: 10.3390/plants10030591
|
32 |
GUO Jiahua, BAI Yi, CHEN Zhi,et al. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin[J]. Ecotoxicology and Environmental Safety, 2020, 201:110737. doi: 10.1016/j.ecoenv.2020.110737
|
33 |
CHEN Shangchao, CHEN Mindong, WANG Zhuang,et al. Toxicological effects of chlorpyrifos on growth,enzyme activity and chlorophyll a synthesis of freshwater microalgae[J]. Environmental Toxicology and Pharmacology, 2016, 45:179-186. doi: 10.1016/j.etap.2016.05.032
|
34 |
杨弯弯,武氏秋贤,吴亦潇,等. 恩诺沙星和硫氰酸红霉素对铜绿微囊藻的毒性研究[J]. 中国环境科学,2013,33(10):1829-1834.
|
|
YANG Wanwan, WU Shiqiuxian, WU Yixiao,et al. Toxicity of enrofloxacin and erythromycin thiocyanate on microcystis aeruginosa[J]. China Environmental Science,2013,33(10):1829-1834.
|
35 |
崔梦雯. 抗生素对蓝藻产油性能的调控效应与机制研究[D].济南:山东大学,2020.
|
|
CUI Mengwen. The regulation effect and mechanism of antibiotics on cyanobacteria oil production[D]. Ji'nan:Shandong University,2020.
|
36 |
谢丽娜. 耐重金属及抗生素胁迫微藻的选育及其生理响应研究[D]. 南昌:江西农业大学,2022.
|
|
XIE Li'na. Screening of heavy metals and antibiotics tolerance microalgae and analyzing its physiological responses[D]. Nanchang:Jiangxi Agricultural University,2022.
|
37 |
WAN Jinjin, GUO Peiyong, ZHANG Shengxiang. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin[J]. Environmental Science and Pollution Research, 2014, 21(5):3858-3865. doi: 10.1007/s11356-013-2340-3
|
38 |
GEOFFROY L, DEWEZ D, VERNET G,et al. Oxyfluorfen toxic effect on S.obliquus evaluated by different photosynthetic and enzymatic biomarkers[J]. Archives of Environmental Contamination and Toxicology, 2003, 45(4):445-452. doi: 10.1007/s00244-003-2217-4
|
39 |
ZHOU Xudong, JIANG Xincheng, GAO Shan,et al. Effects of oxytetracycline dihydrate and sulfamethoxazole on microcystis aeruginosa and chlamydomonas microsphaera[J]. Journal of Oceanology and Limnology, 2021, 39(1):160-172. doi: 10.1007/s00343-020-9214-6
|
40 |
CHEN Shan, WANG Liqing, FENG Wenbo,et al. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris:Evaluation of growth,photosynthesis,antioxidants,ultrastructure,and nucleic acids[J]. Scientific Reports, 2020, 10:8243. doi: 10.1038/s41598-020-65219-2
|
41 |
ADEREMI A O, NOVAIS S C, LEMOS M F L,et al. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics[J]. Aquatic Toxicology, 2018, 203:130-139. doi: 10.1016/j.aquatox.2018.08.008
|
42 |
王禹霖. 簇生舟形藻(Navicula gregaria Donkin)对三种抗生素胁迫生理响应的初步研究[D]. 哈尔滨:哈尔滨师范大学,2020.
|
|
WANG Yulin. Preliminary study on physiological response of Navicula gregaria Donkin to three antibiotic stresses[D]. Harbin:Harbin Normal University,2020.
|
43 |
ZHANG Lijie, PEI Haiyan, CHEN Shuaiqi,et al. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae[J]. Bioresource Technology, 2018, 250:449-456. doi: 10.1016/j.biortech.2017.11.067
|
44 |
ZHANG Lijie, ZHANG Libin, WU Daoji,et al. Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae’s self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity[J]. Bioresource Technology, 2021, 340:125640. doi: 10.1016/j.biortech.2021.125640
|
45 |
ZHANG Lijie, CHENG Juan, PEI Haiyan,et al. Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production[J]. Renewable Energy, 2018, 115:276-287. doi: 10.1016/j.renene.2017.08.034
|
46 |
JIANG Liqun, ZHANG Lijie, NIE Changliang,et al. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste[J]. Biotechnology for Biofuels, 2018, 11(1):1-14. doi: 10.1186/s13068-018-1064-5
|
47 |
ZHANG Lijie, PEI Haiyan, YANG Zhigang,et al. Microalgae nourished by mariculture wastewater aids aquaculture self-reliance with desirable biochemical composition[J]. Bioresource Technology, 2019, 278:205-213. doi: 10.1016/j.biortech.2019.01.066
|
48 |
YU Ying, ZHOU Yangyang, WANG Zhiliang,et al. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment[J]. Scientific Reports, 2017, 7:4168. doi: 10.1038/s41598-017-04128-3
|
49 |
郑禾山. 利用头孢抗生素废水培养微藻制备生物吸附剂的研究[D]. 哈尔滨:哈尔滨工业大学,2018.
|
|
ZHENG Heshan. Microalgal biosorbents production by microalgae cultivated from cephalosporin antibiotics wastewater[D]. Harbin:Harbin Institute of Technology,2018.
|
50 |
FOMINA M, GADD G M. Biosorption:Current perspectives on concept,definition and application[J]. Bioresource Technology, 2014, 160:3-14. doi: 10.1016/j.biortech.2013.12.102
|
51 |
SUTHERLAND D L, RALPH P J. Microalgal bioremediation of emerging contaminants-Opportunities and challenges[J]. Water Research, 2019, 164:114921. doi: 10.1016/j.watres.2019.114921
|
52 |
XIONG Jiuqiang, KURADE M B, JEON B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2018, 36(1):30-44. doi: 10.1016/j.tibtech.2017.09.003
|
53 |
HENA S, GUTIERREZ L, CROUÉ J P. Removal of metronidazole from aqueous media by C.vulgaris [J]. Journal of Hazardous Materials, 2020, 384:121400. doi: 10.1016/j.jhazmat.2019.121400
|
54 |
|
|
ZHONG Xueqing, ZHU Yali, WANG Yujiao,et al. Progress on antibiotic wastewater treatment by microalgae[J]. Chemical Industry and Engineering Progress, 2021, 40(4):2308-2317. doi: 10.16085/j.issn.1000-6613.2020-0978
|
55 |
KIKI C, RASHID A, WANG Yuwen,et al. Dissipation of antibiotics by microalgae:Kinetics,identification of transformation products and pathways[J]. Journal of Hazardous Materials, 2020, 387:121985. doi: 10.1016/j.jhazmat.2019.121985
|
56 |
TIWARI B, SELLAMUTHU B, OUARDA Y,et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach[J]. Bioresource Technology, 2017, 224:1-12. doi: 10.1016/j.biortech.2016.11.042
|
57 |
CHU Yuhao, ZHANG Chaofan, WANG Rupeng,et al. Biotransformation of sulfamethoxazole by microalgae:Removal efficiency,pathways,and mechanisms[J]. Water Research, 2022, 221:118834. doi: 10.1016/j.watres.2022.118834
|