1 |
Katharina W , Christine H , Erwin S . Groundwater nitrate contamination: Factors and indicators[J]. Journal of Environmental Management, 2012, 111 (3): 178- 186.
URL
|
2 |
Jermakka J, Merta E, Mroueh U M, et al. Solutions for control of nitrogen discharges at mines and quarries[R]. Finland: VTT Technical Research Centre of Finland Ltd., 2015.
|
3 |
Dahab M F , Lee Y W , Bogardi I . A rule-based fuzzy-set approach to risk analysis of nitrate-contaminated groundwater[J]. Water Science and Technology, 1994, 30 (7): 45- 52.
doi: 10.2166/wst.1994.0302
|
4 |
Mirvish S S . Gastric cancer and salivary nitrate and nitrite[J]. Nature, 1985, 315 (6019): 461- 462.
doi: 10.1038/315461c0
|
5 |
Camargo J A , Alonso A . Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment[J]. Environment International, 2006, 32 (6): 831- 849.
URL
|
6 |
Capua F D, Pirozzi F, Lens P N L, et al. Electron donors for autotrophic denitrification[DB/OL]. https://doi.org/10.1016/j.cej.2019.01.069, 2019-01-18.
|
7 |
Capua F D, Papirio S, Lens P N L, et al. Chemolithotrophic denitrification in biofilm reactors[DB/OL]. https://doi.org/10.1016/j.cej.2015.05.131, 2015-06-15.
|
8 |
Batchelor B , Lawrence A W . Autotrophic denitrification using elemental sulfur[J]. Journal(Water Pollution Control Federation), 1978, 50 (8): 1986- 2001.
URL
|
9 |
Mora M , Fernández M , Gómez J M , et al. Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters[J]. Applied Microbiology and Biotechnology, 2014, 99 (1): 77- 87.
URL
|
10 |
Mora M, Guisasola A, Gamisans X, et al. Examining thiosulfatedriven autotrophic denitrification through respirometry[DB/OL]. https://doi.org/10.1016/j.chemosphere.2014.03.083, 2014-05-04.
|
11 |
Kim H R , Lee I S , Bae J H . Performance of a sulphur-utilizing fluidized bed reactor for post-denitrification[J]. Process Biochemistry, 2004, 39 (11): 1591- 1597.
doi: 10.1016/j.procbio.2003.07.004
|
12 |
Christianson L, Lepine C, Tsukuda S, et al. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems[DB/OL]. https://doi.org/10.1016/j.aquaeng.2015.07.002, 2015-07-21.
|
13 |
Park J H , Shin H S , Lee I S , et al. Denitrification of high NO3--N containing wastewater using elemental sulfur; nitrogen loading rate and N2O production[J]. Environmental Technology, 2002, 23 (1): 53- 65.
doi: 10.1080/09593332508618431
|
14 |
Zeng H , Zhang T C . Evaluation of kinetic parameters of a sulfur-limestone autotrophic denitrification biofilm process[J]. Water Research, 2005, 39 (20): 4941- 4952.
doi: 10.1016/j.watres.2005.09.034
|
15 |
Zhang T C , Lampe D G . Sulfur: Limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: Batch experiments[J]. Water Research, 1999, 33 (3): 599- 608.
doi: 10.1016/S0043-1354(98)00281-4
|
16 |
Moon H S , Chang S W , Nam K , et al. Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification[J]. Environmental Pollution, 2006, 144 (3): 802- 807.
doi: 10.1016/j.envpol.2006.02.020
|
17 |
Gevertz D , Telang A J , Voordouw G , et al. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine[J]. Applied and Environmental Microbiology, 2000, 66 (6): 2491- 2501.
doi: 10.1128/AEM.66.6.2491-2501.2000
|
18 |
Takai K , Suzuki M , Nakagawa S , et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogenand sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deepsea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56 (8): 1725- 1733.
doi: 10.1099/ijs.0.64255-0
|
19 |
Koenig A , Liu Linghua . Kinetic model of autotrophic denitrification in sulfur packed-bed reactors[J]. Water Research, 2001, 35 (8): 1969- 1978.
doi: 10.1016/S0043-1354(00)00483-8
|
20 |
Moon H S , Ahn K H , Lee S , et al. Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system[J]. Environmental Pollution, 2004, 129 (3): 499- 507.
doi: 10.1016/j.envpol.2003.11.004
|
21 |
Soares M I M . Denitrification of groundwater with elemental sulfur[J]. Water Research, 2002, 36 (5): 1392- 1395.
doi: 10.1016/S0043-1354(01)00326-8
|
22 |
Furumai H , Tagui H , Fujita K . Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter[J]. Water Science and Technology, 1996, 34 (1/2): 355- 362.
URL
|
23 |
Van der Hoek J P , Hijnen W , Van Bennekom C A , et al. Optimization of the sulphur-limestone filtration process for nitrate removal from groundwater[J]. Journal of Water Supply: Research and Technology-AQUA, 1992, 41 (4): 209- 218.
URL
|
24 |
Sahinkaya E , Dursun N . Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement[J]. Chemosphere, 2012, 89 (2): 144- 149.
doi: 10.1016/j.chemosphere.2012.05.029
|
25 |
Sahinkaya E , Kilic A , Calimlioglu B , et al. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process[J]. Journal of Hazardous Materials, 2013, 262 (15): 234- 239.
URL
|
26 |
Sahinkaya E, Kilic A, Duygulu B. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent[DB/OL]. https://doi.org/10.1016/j.watres.2014.04.052, 2014-05-12.
|
27 |
Seidel H , Wennrich R , Hoffmann P , et al. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments[J]. Chemosphere, 2006, 62 (9): 1444- 1453.
doi: 10.1016/j.chemosphere.2005.06.003
|
28 |
Giordano A, Capua F D, Esposito G, et al. Long-term biogas desulfurization under different microaerobic conditions in full-scale thermophilic digesters co-digesting high-solid sewage sludge[DB/OL]. https://doi.org/10.1016/j.ibiod.2019.05.017, 2019-05-21.
|
29 |
Janssen A , de Keizer A , van Aelst A , et al. Surface characteristics and aggregation of microbiologically produced sulphur particles in relation to the process conditions[J]. Colloids and Surfaces B: Biointerfaces, 1996, 6 (2): 115- 129.
doi: 10.1016/0927-7765(95)01246-X
|
30 |
Kleinjan W E, de Keizer A, Janssen A J H. Biologically produced sulfur[DB/OL]. https://doi.org/10.1002/chin.200415225, 2004-05-25.
|
31 |
Ju Xiumin , Field J , Sierra-Alvarez R , et al. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur[J]. Biotechnology and Bioengineering, 2007, 96 (6): 1073- 1082.
doi: 10.1002/bit.21197
|
32 |
Capua F D , Ahoranta S H , Papirio S , et al. Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus[J]. Process Biochemistry, 2016, 51 (10): 1576- 1584.
doi: 10.1016/j.procbio.2016.06.010
|
33 |
Ucar D, Yilmaz T, Capua F D, et al. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor(SMBR)[DB/OL]. https://doi.org/10.1016/j.biortech.2019.122574, 2019-12-10.
|
34 |
Ucar D, Sahinkaya E, Yilmaz T, et al. Simultaneous nitrate and perchlorate reduction in an elemental sulfur-based denitrifying membrane bioreactor[DB/OL]. https://doi.org/10.1016/j.ibiod.2019.104741, 2019-07-24.
|
35 |
Mannina G, Capodici M, Cosenza A, et al. Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study[DB/OL]. https://doi.org/10.1016/j.jenvman.2017.04.031, 2017-04-26.
|
36 |
Capua F D, Milone I, Lakaniemi A M, et al. High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures[DB/OL]. https://doi.org/10.1016/j.cej.2016.12.106, 2016-12-25.
|
37 |
Capua F D , Lakaniemi A M , Puhakka J A , et al. High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor[J]. Chemical Engineering Journal, 2017, 310 (1): 282- 291.
URL
|
38 |
Capua F D, Milone I, Lakaniemi A M, et al. Effects of different nickel species on autotrophic denitrification driven by Thiosulfate in batch tests and a fluidized-bed reactor[DB/OL]. https://doi.org/10.1016/j.biortech.2017.04.082, 2017-04-24.
|
39 |
Khanongnuch R, Capua F D, Lakaniemi A M, et al. Effect of N/S ratio on anoxic thiosulfate oxidation in a fluidized bed reactor: Experimental and artificial neural network model analysis[DB/OL]. https://doi.org/10.1016/j.procbio.2018.02.018, 2018-02-23.
|
40 |
Khanongnuch R , Capua F D , Lakaniemi A M , et al. Longterm performance evaluation of an anoxic sulfur oxidizing moving bed biofilm reactor under nitrate limited conditions[J]. Environmental Science: Water Research & Technology, 2019, 5 (6): 1072- 1081.
URL
|
41 |
Khanongnuch R, Capua F D, Lakaniemi A M, et al. Transient-state operation of an anoxic biotrickling filter for H2S removal[DB/OL]. https://doi.org/10.1016/j.jhazmat.2019.05.043, 2019-05-21.
|
42 |
Kimura K , Nakamura M , Watanabe Y . Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration[J]. Water Research, 2002, 36 (7): 1758- 1766.
doi: 10.1016/S0043-1354(01)00376-1
|
43 |
Sahinkaya E, Yurtsever A, Aktas O, et al. Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor[DB/OL]. https://doi.org/10.1016/j.cej.2015.01.045, 2015-01-19.
|
44 |
Sahinkaya E, Yurtsever A, Ucar D. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(Ⅵ) and nitrate reduction[DB/OL]. https://doi.org/10.1016/j.jhazmat.2016.02.032, 2016-02-15.
|
45 |
Boon A G . Septicity in sewers: Cause, consequences and containment[J]. Water Science and Technology, 1995, 31 (7): 237- 253.
doi: 10.2166/wst.1995.0240
|
46 |
Mahmood Q , Zheng Ping , Cai Jing , et al. Anoxic sulfide biooxidation using nitrite as electron acceptor[J]. Journal of Hazardous Materials, 2007, 147 (1/2): 249- 256.
URL
|
47 |
Cardoso R B , Sierra-Alvarez R , Rowlette P , et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95 (6): 1148- 1157.
doi: 10.1002/bit.21084
|
48 |
Moraes B S , Souza T S O , Foresti E . Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47 (9): 1395- 1401.
doi: 10.1016/j.procbio.2012.05.008
|
49 |
Wang Aijie , Du Dazhong , Ren Nanqi . An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans[J]. Environmental Letters, 2005, 40 (10): 1939- 1950.
URL
|
50 |
Sorokin D Y , Kuenen J G , Jetten M S M . Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD[J]. Archives of Microbiology, 2001, 175 (2): 94- 101.
doi: 10.1007/s002030000210
|
51 |
Sorokin D Y , Lysenko A M , Mityushina L L , et al. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51 (2): 565- 580.
doi: 10.1099/00207713-51-2-565
|
52 |
Sorokin D Y , Tourova T P , Sjollema K A , et al. Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53 (6): 1779- 1783.
doi: 10.1099/ijs.0.02615-0
|
53 |
王威, 毕志浩, 张若晨, 等. 自养反硝化脱氮耦合沼气同步脱硫效能研究[J]. 环境科学学报, 2019, 39 (10): 3291- 3301.
URL
|
54 |
许健, 王天保, 张秀霞, 等. 碳源对反硝化脱硫工艺碳氮硫同步脱除效果的影响[J]. 哈尔滨工业大学学报, 2017, 49 (8): 37- 41.
URL
|
55 |
于皓, 王爱杰, 陈川. 反硝化脱硫工艺中微生物群落结构及动态分析[J]. 环境科学, 2013, 34 (3): 1190- 1195.
URL
|
56 |
远野, 王爱杰, 马素丽, 等. 反硝化脱硫工艺中生物硫分布特征及分离方法[J]. 哈尔滨工业大学学报, 2014, 46 (8): 34- 39.
URL
|
57 |
Campos J L , Carvalho S , Portela R , et al. Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds[J]. Bioresource Technology, 2008, 99 (5): 1293- 1299.
doi: 10.1016/j.biortech.2007.02.007
|
58 |
Hao Wen, Liu Panpan, Miao Bo, et al. DL-cysteine and L-cystine formation and their enhancement effects during sulfur autotrophic denitrification[DB/OL]. https://doi.org/10.1016/j.scitotenv.2019.133823, 2019-08-06.
|
59 |
Zou Gang, Papirio S, Lakaniemi A M, et al. High rate autotrophic denitrification in fluidizedbed biofilm reactors[DB/OL]. https://doi.org/10.1016/j.cej.2015.09.074, 2015-09-28.
|
60 |
Sorokin D Y , Tourova T P , Antipov A N , et al. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with Thiocyanate[J]. Microbiology, 2004, 150 (7): 2435- 2442.
URL
|
61 |
Sorokin D Y , Tourova T P , Bezsoudnova E Y , et al. Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov.-a moderately halophilic chemolithoautotrophic sulfur-oxidizing gammaproteobacterium from hypersaline lakes[J]. Archives Microbiology, 2007, 187 (6): 441- 450.
doi: 10.1007/s00203-006-0208-3
|
62 |
Broman E , Jawad A , Wu Xiaofen , et al. Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor[J]. Biodegradation, 2017, 28 (4): 287- 301.
URL
|
63 |
Bosch J , Lee K Y , Jordan G , et al. Anaerobic, nitrate dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans[J]. Environmental Science & Technology, 2012, 46 (4): 2095- 2101.
|
64 |
Kong Zhe, Li Lu, Feng Chuanping, et al. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment[DB/OL]. https://doi.org/10.1016/j.biortech.2016.03.083, 2016-05-18.
|
65 |
Pu Jiaoyang, Feng Chuanping, Liu Ying, et al. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater[DB/OL]. https://doi.org/10.1016/j.biortech.2014.09.092, 2014-09-28.
|
66 |
Adams C A , Warnes G M , Nicholas D J D . A sulphite-dependent nitrate reductase from Thiobacillus denitrificans[J]. Biochimica et Biophysica Acta(BBA)-Enzymology, 1971, 235 (2): 398- 406.
URL
|
67 |
Sabba F , DeVries A , Vera M , et al. Potential use of sulfite as a supplemental electron donor for wastewater denitrification[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15 (4): 563- 572.
|
68 |
张舒齐, 冯传平, 梁晶, 等. 铜铁元素对硫自养反硝化的效率影响[J]. 资源与产业, 2018, 20 (3): 64- 69.
URL
|