1 |
蒋芳, 雷婷, 李声剑, 等. 聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展[J]. 材料导报, 2019, 33 (S2): 526- 532.
URL
|
2 |
Alyüz B , Veli S . Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins[J]. Journal of Hazardous Materials, 2009, 167 (1/2/3): 482- 488.
URL
|
3 |
Lu Huanliang , Zhang Weihua , Yang Yuxi , et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46 (3): 854- 862.
doi: 10.1016/j.watres.2011.11.058
|
4 |
Kailash D , Dharmendra P , Anil V , et al. Low cost adsorbents for heavy metal removal from wastewater: A review[J]. Chemistry and Environment, 2010, 14 (1): 100- 103.
URL
|
5 |
Inyang M , Gao Bin , Yao Ying , et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science & Technology, 2016, 46 (4): 406- 433.
URL
|
6 |
Chen Zaiming , Xiao Xin , Chen Baoliang , et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science & Technology, 2015, 49 (1): 309- 317.
URL
|
7 |
Wang Li , Wang Yujiao , Ma Fang , et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review[J]. Science of The Total Environment, 2019, 668, 1298- 1309.
doi: 10.1016/j.scitotenv.2019.03.011
|
8 |
Shaheen S , Khan N , Hassan N , et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review[J]. International Materials Reviews, 2019, 64 (4): 216- 247.
doi: 10.1080/09506608.2018.1473096
|
9 |
Niazi N K , Murtaza B , Bili I , et al. Removal and recovery of metals by biosorbents and biochars derived from biowastes[J]. Environmental Materials and Waste, 2016, 7, 149- 177.
URL
|
10 |
Hu Chunxia , Qiu Muqing . Characterization of the biochar derived from peanut shell and adsorption of Pb(Ⅱ) from aqueous solutions[J]. Nature Environment and Pollution Technology, 2019, 18 (1): 225- 230.
URL
|
11 |
Meng Jun , Feng Xiaoli , Dai Zhongmin , et al. Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto biochar derived from swine manure[J]. Environmental Science and Pollution Research, 2014, 21 (11): 7035- 7046.
doi: 10.1007/s11356-014-2627-z
|
12 |
Liu Zhengang , Zhang Fushen . Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167 (1/2/3): 933- 939.
URL
|
13 |
Chang Jianning , Zhang Haibo , Cheng Hongyan , et al. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water[J]. Chemosphere, 2020, 241, 125121.
doi: 10.1016/j.chemosphere.2019.125121
|
14 |
Regmi P , Moscoso J L G , Kumar S , et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management, 2012, 109, 61- 69.
URL
|
15 |
Devi P , Saroha A K . Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent[J]. Bioresource Technology, 2014, 169, 525- 531.
doi: 10.1016/j.biortech.2014.07.062
|
16 |
Ye Jianjun , Xiao Henglin , Xiao Benlin , et al. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta[J]. Water Science and Technology, 2015, 72 (9): 1662- 1666.
doi: 10.2166/wst.2015.386
|
17 |
Giovanella P , Cabral L , Costa A P , et al. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals[J]. Ecotoxicology and Environmental Safety, 2017, 140, 162- 169.
doi: 10.1016/j.ecoenv.2017.02.010
|
18 |
Anna C , Sobolczyk-Bednarek J , Aba W , et al. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a box-behnken design[J]. Ecotoxicology and Environmental Safety, 2018, 149, 275- 283.
doi: 10.1016/j.ecoenv.2017.12.008
|
19 |
王小波, 李学如, 茆灿泉, 等. 耐镉马克思克鲁维酵母重金属镉吸附特性的研究[J]. 菌物学报, 2013, 32 (5): 868- 875.
URL
|
20 |
刘忠晓. 小球藻对水体污染物重金属Cd的生物吸附研究[J]. 绿色科技, 2017, (18): 128- 130.
URL
|
21 |
余劲聪, 何舒雅, 曾润颖, 等. 芽孢杆菌修复土壤重金属镉污染的研究进展[J]. 广东农业科学, 2016, 43 (1): 73- 78.
doi: 10.3969/j.issn.1004-874X.2016.01.014
|
22 |
Yu Qiang , Fein J B . Enhanced removal of dissolved Hg(Ⅱ), Cd(Ⅱ), and Au(Ⅲ) from water by Bacillus subtilis bactrial biomass containing an elevated concentration of sulfhydryl sites[J]. Environmental Science & Technology, 2017, 51 (24): 14360- 14367.
|
23 |
Tahir U , Yasmin A . Role of bacterial extracellular polymeric substances(EPS) in uptake and accumulation of co-contaminants[J]. International Journal of Environmental Science and Technology, 2019, 16 (12): 8081- 8092.
doi: 10.1007/s13762-019-02360-0
|
24 |
Dogan N , Kantar C , Gulcan S , et al. Chromium(Ⅵ) bioremoval by Pseudomonas bacteria: Role of microbial exudates for natural attenuation and biotreatment of Cr(Ⅵ) contamination[J]. Environmental Science & Technology, 2011, 45 (6): 2278- 2285.
URL
|
25 |
张杰, 张丽丽, 李媛媛, 等. 1株Cr(Ⅵ)抗性菌株的筛选鉴定及去除Cr(Ⅵ)特性[J]. 江苏农业科学, 2017, 45 (16): 268- 271.
URL
|
26 |
Zur J , Wojcieszynska D , Guzik U , et al. Metabolic responses of bacterial cells to immobilization[J]. Molecules, 2016, 21 (7): 958.
doi: 10.3390/molecules21070958
|
27 |
钱林波, 元妙新, 陈宝梁, 等. 固定化微生物技术修复PAHs污染土壤的研究进展[J]. 环境科学, 2012, 33 (5): 1767- 1776.
URL
|
28 |
Ruiz-Marin A , Mendoza-Espinosa L , Stephenson T , et al. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater[J]. Bioresource Technology, 2010, 101 (1): 58- 64.
doi: 10.1016/j.biortech.2009.02.076
|
29 |
Kumar A , Mudhoo A , Sivagurunathan P , et al. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production[J]. Bioresource Technology, 2016, 219, 725- 737.
doi: 10.1016/j.biortech.2016.08.065
|
30 |
Pino N , Luisa M , Gustavo A , et al. Bioaugmentation with immobilized microorganisms to enhance phytoremediation of PCB-contaminated soil[J]. Journal of Soil Contamination, 2016, 25 (4): 419- 430.
doi: 10.1080/15320383.2016.1148010
|
31 |
王彩冬, 黄兵, 罗欢, 等. 固定化微生物技术及其应用研究进展[J]. 云南化工, 2007, 34 (4): 79- 91.
doi: 10.3969/j.issn.1004-275X.2007.04.022
|
32 |
司圆圆, 陈兴汉, 关则智, 等. 固定化微生物技术在水处理中的应用进展[J]. 资源节约与环保, 2019, (6): 94- 95.
doi: 10.3969/j.issn.1673-2251.2019.06.086
|
33 |
何延青, 刘俊良, 杨平, 等. 微生物固定化技术与载体结构的研究[J]. 环境科学, 2004, 25 (S1): 101- 104.
URL
|
34 |
杜勇. 生物炭固定化微生物去除水中苯酚的研究[D]. 重庆: 重庆大学, 2012.
|
35 |
Chen Haoming , Zhang Jiawen , Tang Lingyi , et al. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria[J]. Environment International, 2019, 127, 395- 401.
doi: 10.1016/j.envint.2019.03.068
|
36 |
Ma Linlin , Chen Nan , Feng Chuanping , et al. Feasibility and mechanism of microbial-phosphorus minerals-alginate immobilized particles in bioreduction of hexavalent chromium and synchronous removal of trivalent chromium[J]. Bioresource Technology, 2019, 294, 122213.
doi: 10.1016/j.biortech.2019.122213
|
37 |
Wang Ting , Sun Hongwen , Ren Xinhao , et al. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials[J]. Ecotoxicology and Environmental Safety, 2018, 148, 285- 292.
doi: 10.1016/j.ecoenv.2017.10.039
|
38 |
Thies J E , Rillig M C . Characteristics of biochar: Biological properties[J]. Biochar for Environmental Management: Science and Technology, 2009, 6, 85- 105.
URL
|
39 |
戚鑫, 陈晓明, 肖诗琦, 等. 生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J]. 农业环境科学学报, 2018, 37 (8): 1683- 1689.
URL
|
40 |
顾玲峰. 生物炭固定化菌群研制及其修复芘-Cr(Ⅵ)复合污染土壤研究[D]. 上海: 上海大学, 2016.
|
41 |
迟建国, 吕吉利, 高永超, 等. 生物炭固定化菌剂对含油海水中石油的去除[J]. 工业安全与环保, 2015, 41 (6): 17- 20.
doi: 10.3969/j.issn.1001-425X.2015.06.005
|
42 |
Tao Siyuan , Wu Zhansheng , He Xiufang , et al. Characterization of biochar prepared from cotton stalks as efficient inoculum carriers for Bacillus subtilis SL-13[J]. BioResources, 2018, 13 (1): 1773- 1786.
URL
|
43 |
徐立芹. 枯草芽孢杆菌对Cu2+和Cd2+吸附特性及机理[D]. 沈阳: 东北大学, 2009.
|
44 |
Liu Ni , Liu Yunguo , Zeng Guangming , et al. Adsorption of 17β-estradiol from aqueous solution by raw and direct/pre/post-KOH treated lotus seedpod biochar[J]. Journal of Environmental Sciences, 2020, 87, 10- 23.
doi: 10.1016/j.jes.2019.05.026
|
45 |
刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41 (9): 4322- 4332.
URL
|
46 |
Klein J , Ziehr H . Immobilization of microbial cells by adsorption[J]. Journal of Biotechnology, 1990, 16 (1/2): 1- 15.
URL
|
47 |
Lou Liping , Huang Qian , Lou Yiling , et al. Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar[J]. Chemosphere, 2019, 228, 676- 684.
doi: 10.1016/j.chemosphere.2019.04.151
|
48 |
Garrett T R , Bhakoo M , Zhang Zhibing , et al. Bacterial adhesion and biofilms on surfaces[J]. Progress in Natural Science, 2008, 18 (9): 1049- 1056.
doi: 10.1016/j.pnsc.2008.04.001
|
49 |
赵瑞雪. 芽孢杆菌Z-y3与龙虾壳生物炭去除Pb(Ⅱ)的特性研究[D]. 武汉: 武汉大学, 2018.
|
50 |
Teng Zedong , Shao Wen , Zhang Keyao , et al. Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/nanoscale zero valent iron composite[J]. Journal of Hazardous Materials, 2020, 384, 121505.
doi: 10.1016/j.jhazmat.2019.121505
|
51 |
Warnock D D , Lehmann J , Kuyper T W , et al. Mycorrhizal responses to biochar in soil: Concepts and mechanisms[J]. Plant and Soil, 2007, 300 (1/2): 9- 20.
URL
|
52 |
Cahyo P , Julie J E , Baeyens J , et al. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure[J]. Biology and Fertility of Soils, 2014, 50 (4): 695- 702.
doi: 10.1007/s00374-013-0884-5
|
53 |
Sun Daquan , Meng Jun , Liang Hao , et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities[J]. Journal of Soils and Sediments, 2015, 15 (2): 271- 281.
doi: 10.1007/s11368-014-0996-z
|
54 |
Yuan Yong , Bolan N , Prévoteau A , et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246, 271- 281.
doi: 10.1016/j.biortech.2017.06.154
|
55 |
Kappler A , Wuestner M L , Ruecker A , et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1 (8): 339- 344.
URL
|