1 |
徐昌文, 王声东. 垃圾渗滤液及膜滤浓缩液处理技术探讨与分析[J]. 环境与可持续发展, 2020, 45 (5): 72- 75.
URL
|
2 |
王晓青, 杨少武, 胡明成. 垃圾浓缩渗滤液处理技术研究应用进展[J]. 轻工科技, 2016, 32 (10): 80- 81.
URL
|
3 |
Zhang Long , Li Aimin , Lu Yufei , et al. Characterization and removal of dissolved organic matter(DOM) from landfill leachate rejected by nanofiltration[J]. Waste Management, 2009, 29 (3): 1035- 1040.
doi: 10.1016/j.wasman.2008.08.020
|
4 |
孙雨清, 赵俊. 垃圾渗滤液反渗透浓缩液处理技术综述[J]. 山西建筑, 2013, 39 (11): 194- 196.
doi: 10.3969/j.issn.1009-6825.2013.11.102
|
5 |
郑可, 周少奇, 叶秀雅, 等. 臭氧氧化法处理反渗透浓缩垃圾渗滤液[J]. 环境工程学报, 2012, 6 (2): 467- 470.
URL
|
6 |
Wang Yujue , Li Xinyang , Zhen Limin , et al. Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate[J]. Journal of Hazardous Materials, 2012, 229/230, 115- 121.
doi: 10.1016/j.jhazmat.2012.05.108
|
7 |
张亚通, 朱鹏毅, 朱建华, 等. 垃圾渗滤液膜截留浓缩液处理工艺研究进展[J]. 工业水处理, 2019, 39 (9): 18- 23.
URL
|
8 |
宋相和. 高级氧化+生化组合工艺处理炼化反渗透浓水[J]. 环保科技, 2019, 25 (3): 17- 20.
doi: 10.3969/j.issn.1674-0254.2019.03.005
|
9 |
Moreira F C , Soler J , Fonseca A , et al. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate[J]. Water Research, 2015, 81 (6): 375- 387.
URL
|
10 |
王秀珍. 水污染治理中生物强化技术应用研究[J]. 资源节约与环保, 2020, (12): 81- 82.
doi: 10.3969/j.issn.1673-2251.2020.12.047
|
11 |
栾晓丽, 曲媛媛. 浅谈生物强化技术及其在水污染治理中的应用[J]. 资源节约与环保, 2016, (2): 38- 39.
doi: 10.3969/j.issn.1673-2251.2016.02.050
|
12 |
袁信, 连晓雯, 邓莎. 生物强化技术及其在水污染治理中的应用分析[J]. 环境与发展, 2019, 31 (2): 79.
URL
|
13 |
Matsuzaka E , Nomura N , Nakajima-Kambe T , et al. A simple screening procedure for heterotrophic nitrifying bacteria with oxygen-tolerant denitrification activity[J]. Journal of Bioscience and Bioengineering, 2003, 95 (4): 409- 411.
doi: 10.1016/S1389-1723(03)80077-4
|
14 |
田雪雪, 程玉立, 张圆圆, 等. 一株异养硝化-好氧反硝化功能菌的分离鉴定及其脱氮特性[J]. 环境工程学报, 2017, (2): 1269- 1275.
URL
|
15 |
杨庆, 张超奇, 马丽晓, 等. 一株高效凤眼莲脱胶菌的筛选及鉴定[J]. 生态与农村环境学报, 2017, 33 (3): 275- 280.
URL
|
16 |
付昆明, 曹相生, 孟雪征, 等. 污水反硝化过程中亚硝酸盐的积累规律[J]. 环境科学, 2011, 32 (6): 1660- 1664.
URL
|
17 |
巩有奎, 王淑莹, 王莎莎, 等. 碳氮比对短程反硝化过程中N2O产生的影响[J]. 化工学报, 2011, 62 (7): 2049- 2054.
doi: 10.3969/j.issn.0438-1157.2011.07.039
|
18 |
何环, 余萱, 韩亚涛, 等. 异养硝化好氧反硝化菌脱氮特性的研究进展[J]. 工业水处理, 2017, 37 (4): 12- 17.
URL
|
19 |
袁建华, 赵天涛, 彭绪亚. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展[J]. 生物工程学报, 2019, 35 (6): 942- 955.
URL
|
20 |
王兆阳, 陈国耀, 姜珂, 等. 1株耐冷兼性嗜碱好氧反硝化菌的分离鉴定及反硝化特性[J]. 环境科学, 2014, 35 (6): 2341- 2348.
URL
|
21 |
韩永和, 章文贤, 庄志刚, 等. 耐盐好氧反硝化菌A-13菌株的分离鉴定及其反硝化特性[J]. 微生物学报, 2013, 53 (1): 47- 58.
URL
|
22 |
陈均利, 彭英湘, 刘锋, 等. 异养硝化-好氧反硝化菌脱氮特性研究进展[J]. 环境科学与技术, 2020, 43 (5): 41- 48.
URL
|
23 |
He Tengxia , Ye Qing , Sun Quan , et al. Removal of nitrate in simulated water at low temperature by a novel psychrotrophic and aerobic bacterium, Pseudomonas taiwanensis strain J[J]. Biomed Research International, 2018, 2018, 1- 9.
URL
|
24 |
修海峰, 朱仲元, 丁爱中, 等. 好氧反硝化菌种DF2的分离鉴定及生理生化特性分析[J]. 生态环境学报, 2011, 20 (8/9): 1307- 1314.
URL
|
25 |
宋宇杰, 李屹, 刘玉香, 等. 碳源和氮源对异养硝化好氧反硝化菌株Y1脱氮性能的影响[J]. 环境科学学报, 2013, 33 (9): 2491- 2497.
URL
|
26 |
王田野, 魏荷芬, 胡子全, 等. 一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性[J]. 环境科学学报, 2017, 37 (3): 946- 953.
URL
|
27 |
王萌萌, 曹刚, 张迪, 等. 异养硝化-好氧反硝化混合菌对尿素的去除及重金属和盐度的影响[J]. 环境科学, 2020, 41 (6): 285- 293.
URL
|
28 |
Bassin J P , Dezotti M , Jr G L S , et al. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor[J]. Journal of Hazardous Materials, 2011, 185 (1): 242- 248.
doi: 10.1016/j.jhazmat.2010.09.024
|
29 |
曲洋, 张培玉, 杨瑞霞, 等. 耐盐异养硝化菌qy18和中度嗜盐异养硝化菌gs2的脱氮特性与耐盐性研究[J]. 海洋环境科学, 2011, 30 (3): 337- 341.
doi: 10.3969/j.issn.1007-6336.2011.03.008
|
30 |
鞠晨曦, 李建军. 4种重金属对活性污泥的呼吸抑制作用[J]. 工业水处理, 2018, 332 (10): 23- 26.
URL
|
31 |
Yu Xuan , Jiang Yiming , Huang Haiying , et al. Simultaneous aerobic denitrification and Cr(Ⅵ) reduction by Pseudomonas brassicacearum LZ-4 in wastewater[J]. Bioresource Technology, 2016, 221, 121- 129.
doi: 10.1016/j.biortech.2016.09.037
|
32 |
An Qiang , Deng Shuman , Xu Jia , et al. Simultaneous reduction of nitrate and Cr(Ⅵ) by Pseudomonas aeruginosa strain G12 in wastewater[J]. Ecotoxicology and Environmental Safety, 2020, 191, 110001.
doi: 10.1016/j.ecoenv.2019.110001
|
33 |
Yang Lei , Wang Xuhui , Cui Shen , et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Bioresource Technology, 2019, 285, 121360.
doi: 10.1016/j.biortech.2019.121360
|
34 |
Zhang Xiang , Yan Junwei , Luo Xiaotong , et al. Simultaneous ammonia and Cr(Ⅵ) removal by Pseudomonas aeruginosa LX in wastewater[J]. Biochemical Engineering Journal, 2020, 157, 107551.
doi: 10.1016/j.bej.2020.107551
|
35 |
Lu Zeyang , Gan Li , Lin Jiajiang , et al. Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(Ⅱ)[J]. Science of the Total Environment, 2019, 658, 80- 86.
doi: 10.1016/j.scitotenv.2018.12.225
|
36 |
Yang Jingrui , Wang Ying , Chen Hu , et al. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrificationaerobic denitrification[J]. Bioresource Technology, 2019, 274, 56- 64.
doi: 10.1016/j.biortech.2018.10.052
|
37 |
郭琳. 酸化液对反硝化速率的影响[J]. 石化技术, 2016, 23 (4): 108.
doi: 10.3969/j.issn.1006-0235.2016.04.080
|
38 |
邹胜男, 梅翔, 谢玥, 等. 以剩余污泥水解酸化液为外加碳源的污水生物脱氮[J]. 环境工程学报, 2011, 5 (11): 2519- 2526.
URL
|