1 |
曹晓磊,盛宇星. 生物法处理含硫酸盐重金属废水的研究进展[J]. 环境科学与技术,2015,38(S2):181-185.
|
|
CAO Xiaolei, SHENG Yuxing. Recent advances in research of treating sulfate-,heavy metals-containing wastewater by anaerobic bio-treatment method[J]. Environmental Science & Technology,2015,38(S2):181-185.
|
2 |
王雨,林志健,姜卓希,等. 生物信息技术预警乌头类中药抗乳腺癌用药风险[J]. 中国药物警戒,2021,18(7):655-662.
|
|
WANG Yu, LIN Zhijian, JIANG Zhuoxi,et al. Early warning of aconitum herbs in breast cancer therapy by bibliometric and bioinformatics[J]. Chinese Journal of Pharmacovigilance,2021,18(7):655-662.
|
3 |
王义娜. 改革开放30年我国民办高等教育研究:基于文献计量学的分析[J]. 浙江树人大学学报:人文社会科学版,2009,9(2):26-32.
|
|
WANG Yina. Study on China’s non-governmental higher education in 30 years since the reform and opening-up:Based on literature bibliometrical analysis[J]. Journal of Zhejiang Shuren University:Humanities and Social Sciences,2009,9(2):26-32.
|
4 |
杨怀宇,马一鸣. 基于文献计量学的海洋捕捞业研究热点与前沿趋势分析[J]. 中国渔业经济,2020,38(6):7-17.
|
|
YANG Huaiyu, MA Yiming. Analysis of research hotspots and frontier trends of marine fishing industry based on bibliometrics[J]. Chinese Fisheries Economics,2020,38(6):7-17.
|
5 |
段凯鑫,郭红光,成雅彤. 生物煤层气的文献计量与发展综述[J]. 煤矿安全,2020,51(8):206-212.
|
|
DUAN Kaixin, GUO Hongguang, CHENG Yatong. A review of bibliometrics and development of biological coalbed methane[J]. Safety in Coal Mines,2020,51(8):206-212.
|
6 |
|
|
ZHANG Shilei, JIANG Xujia, HONG Guoliang,et al. Application of electrocoagulation technology to water treatment[J]. Industrial Water Treatment, 2013, 33(1):10-14. doi: 10.11894/1005-829x.2013.33(1).10
|
7 |
杨晓秋,吴寅嵩,闫金定,等. 基于文献计量学的微藻生物技术发展趋势[J]. 生物工程学报,2015,31(10):1415-1436.
|
|
YANG Xiaoqiu, WU Yinsong, YAN Jinding,et al. Trends of microalgal biotechnology:A view from bibliometrics[J]. Chinese Journal of Biotechnology,2015,31(10):1415-1436.
|
8 |
成璐瑶,李娟,王良杰,等. 基于文献计量的废水生物强化处理领域发展态势分析[J]. 环境工程,2021,39(3):40-47.
|
|
CHENG Luyao, LI Juan, WANG Liangjie,et al. Development trend analysis of bioaugmentation technology for wastewater treatment based on bibliometric[J]. Environmental Engineering,2021,39(3):40-47.
|
9 |
VAN ECK N J, WALTMAN L. Software survey:VOSviewer,a computer program for bibliometric mapping[J]. Scientometrics,2010,84(2):523-538.
|
10 |
蒋立人. 对《废水的活性污泥法设计》一文的几点看法[J]. 化工给排水设计,1981,12(1):62-71.
|
|
JIANG Liren. Some views on the paper design of activated sludge process for wastewater[J]. Design of Water Supply and Drainage in Chemical Industry,1981,12(1):62-71.
|
11 |
徐洪峰,姜文,车培枝,等. 硫酸盐对高浓度有机废水厌氧处理的影响[J]. 水处理技术,1992,18(4):50-53.
|
|
XU Hongfeng, JIANG Wen, CHE Peizhi,et al. The effect of sulphate on anaerobic treatment of high strength organic wastewater[J]. Technology of Water Treatment,1992,18(4):50-53.
|
12 |
COLLERAN E. Anaerobic treatment of sulfate-containing waste streams[J]. Antonie Van Leeuwenhoek, 1995, 67(1):29-46. doi: 10.1007/bf00872194
|
13 |
WANG Zhongjiang, LI Yang, JIANG Lianzhou,et al. Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment[J]. Journal of Chemistry, 2014, 2014:475389. doi: 10.1155/2014/475389
|
14 |
王兰敬. h指数在学术评价领域的应用研究进展[J]. 情报科学,2011,29(4):624-627.
|
|
WANG Lanjing. Review of applied research on h-index in research evaluation[J]. Information Science,2011,29(4):624-627.
|
15 |
|
|
WAN Jinkun, HUA Pinghuan, SUN Xiukun. Bibliometrics analysis on cited frequency and downloaded frequency of journal papers[J]. New Technology of Library and Information Service, 2005(4):58-62. doi: 10.11925/infotech.1003-3513.2005.04.15
|
16 |
HIRSCH J E. An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship[J]. Scientometrics, 2010, 85(3):741-754. doi: 10.1007/s11192-010-0193-9
|
17 |
李长玲,支岭,纪雪梅,等. 我国情报学研究进展:基于期刊论文关键词的统计分析[J]. 图书情报工作,2010,54(24):31-36.
|
|
LI Changling, ZHI Ling, JI Xuemei,et al. Trend analysis of information science based on keyword statistics[J]. Library and Information Service,2010,54(24):31-36.
|
18 |
冯新慧,李昀,张婷,等. 大孔微生物载体固定硫酸盐还原菌用于硫酸盐废水处理的研究[J]. 现代化工,2020,40(10):178-183.
|
|
FENG Xinhui, LI Yun, ZHANG Ting,et al. Application of macroporous microbial support immobilized SRB in treatment of sulfates-containing wastewater[J]. Modern Chemical Industry,2020,40(10):178-183.
|
19 |
王继勇,黄品源,何伟. 土豆为缓释碳源负载SRB处理模拟含镉酸性废水[J]. 华中师范大学学报:自然科学版,2021,55(2):244-249.
|
|
WANG Jiyong, HUANG Pinyuan, HE Wei. Potato as a slow-release carbon source to treat simulated acid mine drainage[J]. Journal of Central China Normal University:Natural Sciences,2021,55(2):244-249.
|
20 |
张杰,龙琦,李彦成,等. 酸性矿山废水与选矿废水协同生化处理研究[J]. 水处理技术,2020,46(7):94-98.
|
|
ZHANG Jie, LONG Qi, LI Yancheng,et al. The co-treatment of acid mine drainage and mineral processing wastewater by biological remediation[J]. Technology of Water Treatment,2020,46(7):94-98.
|
21 |
邓奇根,王颖南,吴喜发,等. 硫酸盐还原菌处理煤矿酸性废水的研究及其影响因素[J]. 水处理技术,2020,46(5):8-11.
|
|
DENG Qigen, WANG Yingnan, WU Xifa,et al. Study on the treatment of acid coal mine drainage by sulfate reducing bacteria and its influence factors[J]. Technology of Water Treatment,2020,46(5):8-11.
|
22 |
RODRIGUES C, NÚÑEZ-GÓMEZ D, FOLLMANN H V D M,et al. Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water(MIW) using shrimp shell as treatment agent[J]. Journal of Hazardous Materials, 2020, 398:122893. doi: 10.1016/j.jhazmat.2020.122893
|
23 |
MAGOWO W E, SHERIDAN C, RUMBOLD K. Bioremediation of acid mine drainage using Fischer-Tropsch waste water as a feedstock for dissimilatory sulfate reduction[J]. Journal of Water Process Engineering, 2020, 35:101229. doi: 10.1016/j.jwpe.2020.101229
|
24 |
XI Yanni, LAN Shiming, LI Xin,et al. Bioremediation of antimony from wastewater by sulfate-reducing bacteria:Effect of the coexisting ferrous ion[J]. International Biodeterioration & Biodegradation, 2020, 148:104912. doi: 10.1016/j.ibiod.2020.104912
|
25 |
JANTHARADEJ K, MHUANTONG W, LIMPIYAKORN T,et al. Identification of sulfate-reducing and methanogenic microbial taxa in anaerobic bioreactors from industrial wastewater treatment plants using next-generation sequencing and gene clone library analyses[J]. Journal of Environmental Science and Health:Part A, 2020, 55(11):1283-1293. doi: 10.1080/10934529.2020.1789409
|
26 |
ALTUN M, SAHINKAYA E, DURUKAN I,et al. Arsenic removal in a sulfidogenic fixed-bed column bioreactor[J]. Journal of Hazardous Materials, 2014, 269:31-37. doi: 10.1016/j.jhazmat.2013.11.047
|
27 |
MADZIVIRE G, PETRIK L F, GITARI W M,et al. Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite[J]. Minerals Engineering, 2010, 23(3):252-257. doi: 10.1016/j.mineng.2009.12.004
|
28 |
LUPTAKOVA A, KUSNIEROVA M. Bioremediation of acid mine drainage contaminated by SRB[J]. Hydrometallurgy, 2005, 77(1/2):97-102. doi: 10.1016/j.hydromet.2004.10.019
|
29 |
SINGH S, CHAKRABORTY S. Performance of organic substrate amended constructed wetland treating acid mine drainage(AMD) of North-Eastern India[J]. Journal of Hazardous Materials, 2020, 397:122719. doi: 10.1016/j.jhazmat.2020.122719
|
30 |
GUPTA V, COURTEMANCHE J, GUNN J,et al. Shallow floating treatment wetland capable of sulfate reduction in acid mine drainage impacted waters in a northern climate[J]. Journal of Environmental Management, 2020, 263:110351. doi: 10.1016/j.jenvman.2020.110351
|
31 |
KATO T, KAWASAKI Y, KADOKURA M,et al. Application of GETFLOWS coupled with chemical reactions to arsenic removal through ferrihydrite coprecipitation in an artificial wetland of a Japanese closed mine[J]. Minerals, 2020, 10(5):475. doi: 10.3390/min10050475
|
32 |
ALVAREZ M T, CRESPO C, MATTIASSON B. Precipitation of Zn(Ⅱ),Cu(Ⅱ) and Pb(Ⅱ) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids[J]. Chemosphere, 2007, 66(9):1677-1683. doi: 10.1016/j.chemosphere.2006.07.065
|
33 |
UCAR D, BEKMEZCI O K, KAKSONEN A H,et al. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system[J]. Minerals Engineering, 2011, 24(11):1100-1105. doi: 10.1016/j.mineng.2011.02.005
|
34 |
QIAN Junwei, ZHU Xiaoyu, TAO Yong,et al. Promotion of Ni 2+ removal by masking toxicity to sulfate-reducing bacteria:Addition of citrate[J]. International Journal of Molecular Sciences, 2015, 16(4):7932-7943. doi: 10.3390/ijms16047932
|
35 |
DONG Yanrong, DI Junzhen, YANG Zhenhua,et al. Study on the effectiveness of sulfate-reducing bacteria combined with coal gangue in repairing acid mine drainage containing Fe and Mn[J]. Energies, 2020, 13(4):995. doi: 10.3390/en13040995
|
36 |
KIKOT P, VIERA M, MIGNONE C,et al. Study of the effect of pH and dissolved heavy metals on the growth of sulfate-reducing bacteria by a fractional factorial design[J]. Hydrometallurgy, 2010, 104(3/4):494-500. doi: 10.1016/j.hydromet.2010.02.026
|
37 |
CHRISTENSEN B, LAAKE M, LIEN T. Treatment of acid mine water by sulfate-reducing bacteria;Results from a bench scale experiment[J]. Water Research, 1996, 30(7):1617-1624. doi: 10.1016/0043-1354(96)00049-8
|
38 |
TUTTLE J H, DUGAN P R, RANDLES C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure[J]. Applied Microbiology, 1969, 17(2):297-302. doi: 10.1128/am.17.2.297-302.1969
|
39 |
YAN Su, CHENG Kayu, MORRIS C,et al. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment[J]. Chemosphere, 2020, 252:126570. doi: 10.1016/j.chemosphere.2020.126570
|
40 |
COSTA J M, DE CASTRO K C, RODRIGUEZ R P,et al. Anaerobic reactors for the treatment of sulphate and metal-rich wastewater:A review[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(4):923-934. doi: 10.1080/03067319.2020.1728261
|
41 |
PAGNANELLI F, DE MICHELIS I, MUZIO S D,et al. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage[J]. Journal of Hazardous Materials, 2008, 159(2/3):567-573. doi: 10.1016/j.jhazmat.2008.02.067
|
42 |
KIRAN M G, PAKSHIRAJAN K,DAS G. An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater[J]. Chemical Engineering Science, 2017, 158:606-620. doi: 10.1016/j.ces.2016.11.002
|
43 |
AMOS P W, YOUNGER P L. Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate[J]. Water Research, 2003, 37(1):108-120. doi: 10.1016/s0043-1354(02)00159-8
|
44 |
HILLER-BITTROLFF K, FOREMAN K, BULSECO-MCKIM A N,et al. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers[J]. Environmental Pollution, 2018, 242:797-806. doi: 10.1016/j.envpol.2018.07.017
|
45 |
VELASCO A, RAMÍREZ M, VOLKE-SEPÚLVEDA T,et al. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation[J]. Journal of Hazardous Materials, 2008, 151(2/3):407-413. doi: 10.1016/j.jhazmat.2007.06.004
|
46 |
PARK N, LEE J, CHON K,et al. Investigating microbial activities of constructed wetlands with respect to nitrate and sulfate reduction[J]. Desalination and Water Treatment, 2009, 1(1/2/3):172-179. doi: 10.5004/dwt.2009.173
|
47 |
CHEN Yi, WEN Yue, ZHOU Junwei,et al. Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent[J]. Water Research, 2014, 59:1-10. doi: 10.1016/j.watres.2014.03.077
|
48 |
KUO W C, SHU T Y. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells[J]. Journal of Hazardous Materials, 2004, 113(1/2/3):147-155. doi: 10.1016/j.jhazmat.2004.05.033
|
49 |
SAMPAIO G F, DOS SANTOS A M, COSTA P R DA,et al. High rate of biological removal of sulfate,organic matter,and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source[J]. Water Environment Research:A Research Publication of the Water Environment Federation, 2020, 92(2):245-254. doi: 10.1002/wer.1235
|
50 |
OZDEMIR S, CIRIK K, AKMAN D,et al. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor[J]. Bioresource Technology, 2013, 146:135-143. doi: 10.1016/j.biortech.2013.07.066
|
51 |
CIBATI A, CHENG Kayu, MORRIS C,et al. Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H 2S produced in a lactate-fed anaerobic baffled reactor[J]. Hydrometallurgy, 2013, 139:154-161. doi: 10.1016/j.hydromet.2013.01.022
|
52 |
HESSLER T, HARRISON S T L, HUDDY R J. Stratification of microbial communities throughout a biological sulphate reducing up-flow anaerobic packed bed reactor,revealed through 16S metagenomics[J]. Research in Microbiology, 2018, 169(10):543-551. doi: 10.1016/j.resmic.2018.09.003
|
53 |
VITOR G, PALMA T C, VIEIRA B,et al. Start-up,adjustment and long-term performance of a two-stage bioremediation process,treating real acid mine drainage,coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO 2 nanocomposites[J]. Minerals Engineering, 2015, 75:85-93. doi: 10.1016/j.mineng.2014.12.003
|
54 |
TEEKAYUTTASAKUL P, ANNACHHATRE A P. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process[J]. Journal of Environmental Science and Health:Part A, 2008, 43(12):1424-1430. doi: 10.1080/10934520802232147
|
55 |
VALLERO M V G, LETTINGA G, LENS P N L. High rate sulfate reduction in a submerged anaerobic membrane bioreactor(SAMBaR) at high salinity[J]. Journal of Membrane Science, 2005, 253(1/2):217-232. doi: 10.1016/j.memsci.2004.12.032
|
56 |
KAKSONEN A H, PUHAKKA J A. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals[J]. Engineering in Life Sciences, 2007, 7(6):541-564. doi: 10.1002/elsc.200720216
|
57 |
KAMALI M, KHODAPARAST Z. Review on recent developments on pulp and paper mill wastewater treatment[J]. Ecotoxicology and Environmental Safety, 2015, 114:326-342. doi: 10.1016/j.ecoenv.2014.05.005
|
58 |
CHITAPORNPAN S, CHIEMCHAISRI C, CHIEMCHAISRI W,et al. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater[J]. Bioresource Technology, 2013, 141:65-74. doi: 10.1016/j.biortech.2013.02.048
|
59 |
WU T Y, MOHAMMAD A W, JAHIM J M,et al. Pollution control technologies for the treatment of palm oil mill effluent(POME) through end-of-pipe processes[J]. Journal of Environmental Management, 2010, 91(7):1467-1490. doi: 10.1016/j.jenvman.2010.02.008
|
60 |
GUO Jiahua, WANG Jinting, QIU Yanying,et al. Realizing a high-rate sulfidogenic reactor driven by sulfur-reducing bacteria with organic substrate dosage minimization and cost-effectiveness maximization[J]. Chemosphere, 2019, 236:124381. doi: 10.1016/j.chemosphere.2019.124381
|
61 |
ZHANG Mingliang, WANG Haixia. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage[J]. Minerals Engineering, 2014, 69:81-90. doi: 10.1016/j.mineng.2014.07.010
|
62 |
|
|
AN Wenbo, WANG Laigui, DI Junzhen. Dynamic experimental study on the iron cooperated with SRB sludge immobilized particles to treat AMD[J]. Non-Metallic Mines, 2017, 40(4):8-11. doi: 10.3969/j.issn.1000-8098.2017.04.003
|
63 |
王进,侯成虎,陈静,等. SRB以油菜秸秆为基质处理酸性矿山排水[J]. 合肥工业大学学报:自然科学版,2012,35(12):1676-1680.
|
|
WANG Jin, HOU Chenghu, CHEN Jing,et al. Study of treating acidic mine drainage by sulfate-reducing bacteria using rape straw as substrate[J]. Journal of Hefei University of Technology:Natural Science,2012,35(12):1676-1680.
|
64 |
MAGOWO W E, SHERIDAN C, RUMBOLD K. Global co-occurrence of acid mine drainage and organic rich industrial and domestic effluent:Biological sulfate reduction as a co-treatment-option[J]. Journal of Water Process Engineering, 2020, 38:101650. doi: 10.1016/j.jwpe.2020.101650
|
65 |
SINHAROY A, BASKARAN D, PAKSHIRAJAN K. Process integration and artificial neural network modeling of biological sulfate reduction using a carbon monoxide fed gas lift bioreactor[J]. Chemical Engineering Journal, 2020, 391:123518. doi: 10.1016/j.cej.2019.123518
|
66 |
ARINDAM S, PAKSHIRAJAN K, LENS P N L. Biological sulfate reduction using gaseous substrates to treat acid mine drainage[J]. Current Pollution Reports, 2020, 6(4):328-344. doi: 10.1007/s40726-020-00160-6
|