| 1 | Food and Agriculture Organization of the United Nations(FAO). The state of world fisheries and aquaculture 2016[R]//Contributing to food security and nutrition for all. Rome, 2016: 200. | 
																													
																						| 2 | 张峰峰, 周可, 谢凤行, 等.  农业农村部水产健康养殖示范场(县)创建情况分析[J]. 中国水产, 2018, (5): 32- 35. URL
 | 
																													
																						| 3 | 董双林.  论我国水产养殖业生态集约化发展[J]. 中国渔业经济, 2015, 33 (5): 4- 9. doi: 10.3969/j.issn.1009-590X.2015.05.001
 | 
																													
																						| 4 | 胡金城, 于学权, 辛乃宏, 等.  工厂化循环水养殖研究现状及应用前景[J]. 中国水产, 2017, (6): 94- 97. URL
 | 
																													
																						| 5 | Crab R ,  Avnimelech Y ,  Defoirdt T , et al.  Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270 (1): 1- 14. URL
 | 
																													
																						| 6 | 黄晓婷, 张再利, 刘伟, 等.  生物活性炭处理循环水产养殖废水及其影响因素研究[J]. 环境科学学报, 2011, 31 (11): 2380- 2386. URL
 | 
																													
																						| 7 | Ribeiro L F ,  Eca G F ,  Barros F , et al.  Impacts of shrimp farming cultivation cycles on macrobenthic assemblages and chemistry of sediments[J]. Environmental Pollution, 2016, 211:307- 315. doi: 10.1016/j.envpol.2015.12.031
 | 
																													
																						| 8 | 孙刚, 盛连喜, 千贺裕太郎.  生物扰动在水层-底栖界面耦合中的作用[J]. 生态环境学报, 2006, 15 (5): 1106- 1110. doi: 10.3969/j.issn.1674-5906.2006.05.043
 | 
																													
																						| 9 | Lu Lu ,  Tan Hongxin ,  Luo Guozhi , et al.  The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors[J]. Bioresource Technology, 2012, 124 (11): 180- 185. URL
 | 
																													
																						| 10 | Xiong Wenguang ,  Sun Yongxue ,  Zhang Tong , et al.  Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China[J]. Microbial Ecology, 2015, 70 (2): 425- 432. doi: 10.1007/s00248-015-0583-x
 | 
																													
																						| 11 | 刘佳, 易乃康, 熊永娇, 等.  人工湿地构型对水产养殖废水含氮污染物和抗生素去除的影响[J]. 环境科学, 2016, 37 (9): 3430- 3437. URL
 | 
																													
																						| 12 | Lukwambe B ,  Yang W ,  Zheng Y , et al.  Bioturbation by the razor clam(Sinonovacula constricta) on the microbial community and enzymatic activities in the sediment of the ecological aquaculture wastewater treatment system[J]. Science of the Total Environment, 2018, 643 (1): 1098- 1197. URL
 | 
																													
																						| 13 | 邹俊良, 杨京平, 吕亚敏.  移动床生物膜反应器净化模拟水产养殖废水的研究[J]. 环境科学学报, 2013, 33 (12): 3219- 3226. URL
 | 
																													
																						| 14 | 宋颖.水产养殖污染源强及多介质土壤层技术废水处理效果与机理研究[D].杭州:浙江大学, 2016. URL
 | 
																													
																						| 15 | 张蕊.温室甲鱼养殖废水生物滤池-蔬菜水培系统联合处理技术研究[D].杭州:浙江大学, 2012. URL
 | 
																													
																						| 16 | Halfhide T ,  Akerstrφm A ,  Lekang O I , et al.  Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions[J]. Algal Research, 2014, 6:152- 159. doi: 10.1016/j.algal.2014.10.009
 | 
																													
																						| 17 | Kuo C M ,  Jian J F ,  Lin T H , et al.  Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas[J]. Bioresource Technology, 2016, 221:241- 250. doi: 10.1016/j.biortech.2016.09.014
 | 
																													
																						| 18 | van Rijn J .  Waste treatment in recirculating aquaculture systems[J]. Aquacultural Engineering, 2013, 53:49- 56. doi: 10.1016/j.aquaeng.2012.11.010
 | 
																													
																						| 19 | Ferreira J G, Grant J, Verner-Jeffreys D W, et al. Carrying capacity for aquaculture, modeling frameworks for determination of[M]//Sustainable Food Production. Springer New York, 2012:417-448. | 
																													
																						| 20 | Qiu Liping ,  Ma Jun ,  Zhang Lixin .  Characteristics and utilization of biologically aerated filter backwashed sludge[J]. Desalination, 2007, 208 (1/2/3): 73- 80. URL
 | 
																													
																						| 21 | Feng Yan ,  Qi Jingyao ,  Chi Liying , et al.  Production of sorption functional media(SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor[J]. Journal of Hazardous Materials, 2013, 246/247:61- 69. doi: 10.1016/j.jhazmat.2012.12.014
 | 
																													
																						| 22 | 宋协法, 曹涵, 彭磊.  一种新型滤料在循环养殖水处理中的应用[J]. 环境工程学报, 2007, (12): 27- 31. doi: 10.3969/j.issn.1673-9108.2007.12.005
 | 
																													
																						| 23 | 蒋轶锋, 刘大华, 孙同喜, 等.  沸石滤料曝气生物滤池处理水产养殖废水的工艺特性[J]. 环境科学, 2010, 31 (3): 703- 708. URL
 | 
																													
																						| 24 | 周洪玉, 韩梅琳, 仇天雷, 等.  不同生物过滤系统铵态氮转化速率及生物膜特性分析[J]. 环境科学, 2017, 38 (6): 2444- 2452. URL
 | 
																													
																						| 25 | Hamlin H J ,  Michaels J T ,  Beaulaton C W , et al.  Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture[J]. Aquaculture Engineering, 2008, 38 (2): 79- 92. URL
 | 
																													
																						| 26 | Luo Guozhi ,  Gao Qi ,  Wang Chaohui , et al.  Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia(Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system[J]. Aquaculture, 2014, 422/423:1- 7. doi: 10.1016/j.aquaculture.2013.11.023
 | 
																													
																						| 27 | Ruan Yunjie ,  Zhu Liang ,  Xu Xiangyang .  Study on the flocs poly-β-hydroxybutyrate production and process optimization in the bio-flocs technology system[J]. Bioresource Technology, 2011, 102 (16): 7599- 7602. doi: 10.1016/j.biortech.2011.05.028
 | 
																													
																						| 28 | Kim J H ,  Su K K ,  Kim J H .  Bio-floc technology application in flatfish Paralichthys olivaceus culture:Effects on water quality, growth, hematological parameters, and immune responses[J]. Aquaculture, 2018, 495:703- 709. doi: 10.1016/j.aquaculture.2018.06.034
 | 
																													
																						| 29 | Hende V S D ,  Beelen V ,  Bore G , et al.  Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs:From lab reactors to an outdoor raceway pond[J]. Bioresource Technology, 2014, 159 (6): 342- 354. URL
 | 
																													
																						| 30 | Hu Yuansheng ,  Zhao Yaqian ,  Zhao Xiaohong , et al.  High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland[J]. Environmental Science & Technology, 2012, 46 (8): 4583- 4590. URL
 | 
																													
																						| 31 | Shi Yonghai ,  Zhang Genyu ,  Liu Jianzhong , et al.  Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp grow out systems[J]. Bioresource Technology, 2011, 102 (20): 9416- 9424. doi: 10.1016/j.biortech.2011.07.058
 | 
																													
																						| 32 | Lin Y F ,  Jing S R ,  Lee D Y , et al.  Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate[J]. Environmental Pollution, 2005, 134 (3): 411- 421. URL
 | 
																													
																						| 33 | Gorito A M ,  Ribeiro A R ,  Domes C R , et al.  Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents[J]. Science of the Total Environment, 2018, 644:1121- 1180. URL
 | 
																													
																						| 34 | Xiong J Q ,  Kurade M B ,  Jeon B H .  Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2017, 36 (1): 30- 44. URL
 | 
																													
																						| 35 | Ansari F A ,  Singh P ,  Guldhe A , et al.  Microalgal cultivation using aquaculture wastewater:Integrated biomass generation and nutrient remediation[J]. Algal Research, 2017, 21:169- 177. doi: 10.1016/j.algal.2016.11.015
 | 
																													
																						| 36 | Gao Feng ,  Li Chen ,  Yang Zhaohui , et al.  Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal[J]. Ecological Engineering, 2016, 92:55- 61. doi: 10.1016/j.ecoleng.2016.03.046
 | 
																													
																						| 37 | Zhang Lu ,  Sun Xiangyang .  Addition of fish pond sediment and rock phosphate enhances the composting of green waste[J]. Bioresource Technology, 2017, 233:116- 126. doi: 10.1016/j.biortech.2017.02.073
 | 
																													
																						| 38 | Meng Jun ,  Wang Lu ,  Zhong Libin , et al.  Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure[J]. Chemosphere, 2017, 180:93- 99. doi: 10.1016/j.chemosphere.2017.04.009
 | 
																													
																						| 39 | Koyama M ,  Nagao N ,  Syukri F , et al.  Effect of temperature on thermophilic composting of aquaculture sludge:NH3 recovery, nitrogen mass balance, and microbial community dynamics[J]. Bioresource Technology, 2018, 265:207- 213. doi: 10.1016/j.biortech.2018.05.109
 | 
																													
																						| 40 | Kouba A ,  Lunda R ,  Hlavác D , et al.  Vermicomposting of sludge from recirculating aquaculture system using Eisenia andrei:Technological feasibility and quality assessment of end-products[J]. Journal of Cleaner Production, 2017, 177:665- 673. | 
																													
																						| 41 | Zhang Xuedong ,  Tao Yu ,  Hu Jianmei , et al.  Biomethanation and microbial community changes in a digester treating sludge from a brackish aquaculture recirculation system[J]. Bioresource Technology, 2016, 214:338- 347. doi: 10.1016/j.biortech.2016.04.120
 | 
																													
																						| 42 | Gebauer R .  Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production[J]. Bioresource Technology, 2004, 93 (2): 155- 167. doi: 10.1016/j.biortech.2003.10.024
 | 
																													
																						| 43 | Mirzoyan N ,  Gross A .  Use of UASB reactors for brackish aquaculture sludge digestion under different conditions[J]. Water Research, 2013, 47 (8): 2843- 2850. doi: 10.1016/j.watres.2013.02.050
 | 
																													
																						| 44 | Milhazes-Cunha H ,  Otero A .  Valorisation of aquaculture effluents with microalgae:The Integrated Multi-Trophic Aquaculture concept[J]. Algal Research, 2017, 24 (B): 416- 424. | 
																													
																						| 45 | Cabrita A R J ,  Maia M R G ,  Sousa-Pinto I , et al.  Ensilage of seaweeds from an integrated multi-trophic aquaculture system[J]. Algal Research, 2017, 24 (A): 290- 298. URL
 | 
																													
																						| 46 | 唐启升, 方建光, 张继红, 等.  多重压力胁迫下近海生态系统与多营养层次综合养殖[J]. 渔业科学进展, 2013, 34 (1): 1- 11. doi: 10.3969/j.issn.1000-7075.2013.01.001
 |