1 |
Food and Agriculture Organization of the United Nations(FAO). The state of world fisheries and aquaculture 2016[R]//Contributing to food security and nutrition for all. Rome, 2016: 200.
|
2 |
张峰峰, 周可, 谢凤行, 等. 农业农村部水产健康养殖示范场(县)创建情况分析[J]. 中国水产, 2018, (5): 32- 35.
URL
|
3 |
董双林. 论我国水产养殖业生态集约化发展[J]. 中国渔业经济, 2015, 33 (5): 4- 9.
doi: 10.3969/j.issn.1009-590X.2015.05.001
|
4 |
胡金城, 于学权, 辛乃宏, 等. 工厂化循环水养殖研究现状及应用前景[J]. 中国水产, 2017, (6): 94- 97.
URL
|
5 |
Crab R , Avnimelech Y , Defoirdt T , et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270 (1): 1- 14.
URL
|
6 |
黄晓婷, 张再利, 刘伟, 等. 生物活性炭处理循环水产养殖废水及其影响因素研究[J]. 环境科学学报, 2011, 31 (11): 2380- 2386.
URL
|
7 |
Ribeiro L F , Eca G F , Barros F , et al. Impacts of shrimp farming cultivation cycles on macrobenthic assemblages and chemistry of sediments[J]. Environmental Pollution, 2016, 211:307- 315.
doi: 10.1016/j.envpol.2015.12.031
|
8 |
孙刚, 盛连喜, 千贺裕太郎. 生物扰动在水层-底栖界面耦合中的作用[J]. 生态环境学报, 2006, 15 (5): 1106- 1110.
doi: 10.3969/j.issn.1674-5906.2006.05.043
|
9 |
Lu Lu , Tan Hongxin , Luo Guozhi , et al. The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors[J]. Bioresource Technology, 2012, 124 (11): 180- 185.
URL
|
10 |
Xiong Wenguang , Sun Yongxue , Zhang Tong , et al. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China[J]. Microbial Ecology, 2015, 70 (2): 425- 432.
doi: 10.1007/s00248-015-0583-x
|
11 |
刘佳, 易乃康, 熊永娇, 等. 人工湿地构型对水产养殖废水含氮污染物和抗生素去除的影响[J]. 环境科学, 2016, 37 (9): 3430- 3437.
URL
|
12 |
Lukwambe B , Yang W , Zheng Y , et al. Bioturbation by the razor clam(Sinonovacula constricta) on the microbial community and enzymatic activities in the sediment of the ecological aquaculture wastewater treatment system[J]. Science of the Total Environment, 2018, 643 (1): 1098- 1197.
URL
|
13 |
邹俊良, 杨京平, 吕亚敏. 移动床生物膜反应器净化模拟水产养殖废水的研究[J]. 环境科学学报, 2013, 33 (12): 3219- 3226.
URL
|
14 |
宋颖.水产养殖污染源强及多介质土壤层技术废水处理效果与机理研究[D].杭州:浙江大学, 2016.
URL
|
15 |
张蕊.温室甲鱼养殖废水生物滤池-蔬菜水培系统联合处理技术研究[D].杭州:浙江大学, 2012.
URL
|
16 |
Halfhide T , Akerstrφm A , Lekang O I , et al. Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions[J]. Algal Research, 2014, 6:152- 159.
doi: 10.1016/j.algal.2014.10.009
|
17 |
Kuo C M , Jian J F , Lin T H , et al. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas[J]. Bioresource Technology, 2016, 221:241- 250.
doi: 10.1016/j.biortech.2016.09.014
|
18 |
van Rijn J . Waste treatment in recirculating aquaculture systems[J]. Aquacultural Engineering, 2013, 53:49- 56.
doi: 10.1016/j.aquaeng.2012.11.010
|
19 |
Ferreira J G, Grant J, Verner-Jeffreys D W, et al. Carrying capacity for aquaculture, modeling frameworks for determination of[M]//Sustainable Food Production. Springer New York, 2012:417-448.
|
20 |
Qiu Liping , Ma Jun , Zhang Lixin . Characteristics and utilization of biologically aerated filter backwashed sludge[J]. Desalination, 2007, 208 (1/2/3): 73- 80.
URL
|
21 |
Feng Yan , Qi Jingyao , Chi Liying , et al. Production of sorption functional media(SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor[J]. Journal of Hazardous Materials, 2013, 246/247:61- 69.
doi: 10.1016/j.jhazmat.2012.12.014
|
22 |
宋协法, 曹涵, 彭磊. 一种新型滤料在循环养殖水处理中的应用[J]. 环境工程学报, 2007, (12): 27- 31.
doi: 10.3969/j.issn.1673-9108.2007.12.005
|
23 |
蒋轶锋, 刘大华, 孙同喜, 等. 沸石滤料曝气生物滤池处理水产养殖废水的工艺特性[J]. 环境科学, 2010, 31 (3): 703- 708.
URL
|
24 |
周洪玉, 韩梅琳, 仇天雷, 等. 不同生物过滤系统铵态氮转化速率及生物膜特性分析[J]. 环境科学, 2017, 38 (6): 2444- 2452.
URL
|
25 |
Hamlin H J , Michaels J T , Beaulaton C W , et al. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture[J]. Aquaculture Engineering, 2008, 38 (2): 79- 92.
URL
|
26 |
Luo Guozhi , Gao Qi , Wang Chaohui , et al. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia(Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system[J]. Aquaculture, 2014, 422/423:1- 7.
doi: 10.1016/j.aquaculture.2013.11.023
|
27 |
Ruan Yunjie , Zhu Liang , Xu Xiangyang . Study on the flocs poly-β-hydroxybutyrate production and process optimization in the bio-flocs technology system[J]. Bioresource Technology, 2011, 102 (16): 7599- 7602.
doi: 10.1016/j.biortech.2011.05.028
|
28 |
Kim J H , Su K K , Kim J H . Bio-floc technology application in flatfish Paralichthys olivaceus culture:Effects on water quality, growth, hematological parameters, and immune responses[J]. Aquaculture, 2018, 495:703- 709.
doi: 10.1016/j.aquaculture.2018.06.034
|
29 |
Hende V S D , Beelen V , Bore G , et al. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs:From lab reactors to an outdoor raceway pond[J]. Bioresource Technology, 2014, 159 (6): 342- 354.
URL
|
30 |
Hu Yuansheng , Zhao Yaqian , Zhao Xiaohong , et al. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland[J]. Environmental Science & Technology, 2012, 46 (8): 4583- 4590.
URL
|
31 |
Shi Yonghai , Zhang Genyu , Liu Jianzhong , et al. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp grow out systems[J]. Bioresource Technology, 2011, 102 (20): 9416- 9424.
doi: 10.1016/j.biortech.2011.07.058
|
32 |
Lin Y F , Jing S R , Lee D Y , et al. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate[J]. Environmental Pollution, 2005, 134 (3): 411- 421.
URL
|
33 |
Gorito A M , Ribeiro A R , Domes C R , et al. Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents[J]. Science of the Total Environment, 2018, 644:1121- 1180.
URL
|
34 |
Xiong J Q , Kurade M B , Jeon B H . Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2017, 36 (1): 30- 44.
URL
|
35 |
Ansari F A , Singh P , Guldhe A , et al. Microalgal cultivation using aquaculture wastewater:Integrated biomass generation and nutrient remediation[J]. Algal Research, 2017, 21:169- 177.
doi: 10.1016/j.algal.2016.11.015
|
36 |
Gao Feng , Li Chen , Yang Zhaohui , et al. Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal[J]. Ecological Engineering, 2016, 92:55- 61.
doi: 10.1016/j.ecoleng.2016.03.046
|
37 |
Zhang Lu , Sun Xiangyang . Addition of fish pond sediment and rock phosphate enhances the composting of green waste[J]. Bioresource Technology, 2017, 233:116- 126.
doi: 10.1016/j.biortech.2017.02.073
|
38 |
Meng Jun , Wang Lu , Zhong Libin , et al. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure[J]. Chemosphere, 2017, 180:93- 99.
doi: 10.1016/j.chemosphere.2017.04.009
|
39 |
Koyama M , Nagao N , Syukri F , et al. Effect of temperature on thermophilic composting of aquaculture sludge:NH3 recovery, nitrogen mass balance, and microbial community dynamics[J]. Bioresource Technology, 2018, 265:207- 213.
doi: 10.1016/j.biortech.2018.05.109
|
40 |
Kouba A , Lunda R , Hlavác D , et al. Vermicomposting of sludge from recirculating aquaculture system using Eisenia andrei:Technological feasibility and quality assessment of end-products[J]. Journal of Cleaner Production, 2017, 177:665- 673.
|
41 |
Zhang Xuedong , Tao Yu , Hu Jianmei , et al. Biomethanation and microbial community changes in a digester treating sludge from a brackish aquaculture recirculation system[J]. Bioresource Technology, 2016, 214:338- 347.
doi: 10.1016/j.biortech.2016.04.120
|
42 |
Gebauer R . Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production[J]. Bioresource Technology, 2004, 93 (2): 155- 167.
doi: 10.1016/j.biortech.2003.10.024
|
43 |
Mirzoyan N , Gross A . Use of UASB reactors for brackish aquaculture sludge digestion under different conditions[J]. Water Research, 2013, 47 (8): 2843- 2850.
doi: 10.1016/j.watres.2013.02.050
|
44 |
Milhazes-Cunha H , Otero A . Valorisation of aquaculture effluents with microalgae:The Integrated Multi-Trophic Aquaculture concept[J]. Algal Research, 2017, 24 (B): 416- 424.
|
45 |
Cabrita A R J , Maia M R G , Sousa-Pinto I , et al. Ensilage of seaweeds from an integrated multi-trophic aquaculture system[J]. Algal Research, 2017, 24 (A): 290- 298.
URL
|
46 |
唐启升, 方建光, 张继红, 等. 多重压力胁迫下近海生态系统与多营养层次综合养殖[J]. 渔业科学进展, 2013, 34 (1): 1- 11.
doi: 10.3969/j.issn.1000-7075.2013.01.001
|