1 |
李再兴, 剧盼盼, 左剑恶, 等. 微波强化Fenton氧化法深度处理抗生素废水研究[J]. 工业水处理, 2012, 32 (6): 52- 55.
doi: 10.3969/j.issn.1005-829X.2012.06.014
|
2 |
李国生, 颜杰, 唐楷, 等. 微波强化Fenton氧化法对老龄垃圾渗滤液的处理试验[J]. 净水技术, 2011, 30 (3): 38- 43.
doi: 10.3969/j.issn.1009-0177.2011.03.009
|
3 |
吴慧英, 陈积义, 施周, 等. 微波辐射/活性炭工艺处理高浓度苯酚废水研究[J]. 湖南大学学报: 自然科学版, 2008, 35 (2): 89- 92.
URL
|
4 |
邹学权, 徐新华, 史惠祥, 等. 2, 4-二氯苯酚在炭载铜和铁催化剂上的微波降解[J]. 浙江大学学报: 工学版, 2010, 44 (3): 606- 611.
doi: 10.3785/j.issn.1008-973X.2010.03.034
|
5 |
李江, 张翠红, 陈志敏. 微波辐照活性炭法处理罗丹明B废水的研究[J]. 安徽化工, 2018, 44 (4): 91- 92.
doi: 10.3969/j.issn.1008-553X.2018.04.028
|
6 |
李雨. 微波-活性炭协同处理焦化废水的工艺研究[D]. 昆明: 昆明理工大学, 2008.
|
7 |
何忠坤, 林亲铁, 夏伟平. 微波诱导降解有机废水的研究进展[J]. 应用化工, 2019, 48 (2): 407- 411.
doi: 10.3969/j.issn.1671-3206.2019.02.038
|
8 |
徐丹. 微波协同3D多孔Cu/Ni/Co@碳基复合材料催化氧化降解有机污染物性能研究[D]. 沈阳: 辽宁大学, 2018.
|
9 |
吕淑华, 庄玉夏. 微波强化Fenton氧化法水处理技术的研究进展[J]. 环境与发展, 2018, 30 (3): 82- 83.
URL
|
10 |
袁飞宇. 微波-Fenton设备预处理抗生素废水实验研究[D]. 沈阳: 沈阳工业大学, 2016.
|
11 |
唐瑜钟, 卢伟, 王丹丹, 等. 微波辅助芬顿快速氧化复杂有机废水应用研究[J]. 广东化工, 2018, 45 (24): 15- 16.
doi: 10.3969/j.issn.1007-1865.2018.24.008
|
12 |
Liu Shuting , Huang Jiao , Ye Ying , et al. Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution[J]. Chemical Engineering Journal, 2013, 215/216, 586- 590.
doi: 10.1016/j.cej.2012.11.003
|
13 |
Wang Nannan , Zheng Tong , Jiang Jiping , et al. Pilot-scale treatment of p-nitrophenol wastewater by microwave-enhanced Fenton oxidation process: effects of system parameters and kinetics study[J]. Chemical Engineering Journal, 2014, 239, 351- 359.
doi: 10.1016/j.cej.2013.11.038
|
14 |
Li Shuo , Zhang Guangshan , Zhang Wen , et al. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid(PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 326, 756- 764.
doi: 10.1016/j.cej.2017.06.037
|
15 |
Liu Xinliang , Yin Hailiang , Lin Aiguo , et al. Effective removal of phenol by using activated carbon supported iron prepared under microwave irradiation as a reusable heterogeneous Fenton-like catalyst[J]. Journal of Environmental Chemical Engineering, 2017, 5 (1): 870- 876.
doi: 10.1016/j.jece.2017.01.010
|
16 |
张洁. 基于CuO/Al2O3催化剂的微波辅助类Fenton催化氧化水中PNP的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
17 |
Wang Nannan , Hu Qi , Du Xinyuan , et al. Study on decolorization of Rhodamine B by raw coal fly ash catalyzed Fenton-like process under microwave irradiation[J]. Advanced Powder Technology, 2019, 30 (10): 2369- 2378.
doi: 10.1016/j.apt.2019.07.020
|
18 |
Vieira Y , Silvestri S , Leichtweis J , et al. New insights into the mechanism of heterogeneous activation of nano-magnetite by microwave irradiation for use as Fenton catalyst[J]. Journal of Environmental Chemical Engineering, 2020, 8 (3): 103787.
doi: 10.1016/j.jece.2020.103787
|
19 |
孙杰. 微波辅助铜基碳化硅催化降解苯酚的研究[D]. 杨凌: 西北农林科技大学, 2019.
|
20 |
Hu Limin , Wang Peng , Liu Guoshuai , et al. Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation[J]. Chemosphere, 2020, 240, 124977.
doi: 10.1016/j.chemosphere.2019.124977
|
21 |
Gu Zhepei , Wang Ying , Feng Ke , et al. A comparative study of dinitrodiazophenol industrial wastewater treatment: ozone/hydrogen peroxide versus microwave/persulfate[J]. Process Safety and Environmental Protection, 2019, 130, 39- 47.
doi: 10.1016/j.psep.2019.07.019
|
22 |
Hu Limin , Wang Peng , Zhang Guangshan , et al. Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation[J]. Chemical Engineering Journal, 2020, 383, 123140.
doi: 10.1016/j.cej.2019.123140
|
23 |
殷诚, 周继承, 尹静雅, 等. 微波催化剂CuO/AC微波催化氧化降解废水中的苯酚[J]. 环境工程学报, 2015, 9 (11): 5329- 5335.
doi: 10.12030/j.cjee.20151131
|
24 |
吴慧英. 微波辐射联用活性炭强化有毒物质去除及再生活性炭研究[D]. 长沙: 湖南大学, 2011.
|
25 |
胡鹏飞, 余阳, 何文龙, 等. 微波/Fenton体系催化氧化含苯酚实验室废液研究[J]. 资源节约与环保, 2018, (8): 75- 76, 85.
doi: 10.3969/j.issn.1673-2251.2018.08.065
|
26 |
Gao Jia , Yang Shaogui , Li Na , et al. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation[J]. Applied Surface Science, 2016, 379, 140- 149.
doi: 10.1016/j.apsusc.2016.04.041
|
27 |
Shen Manli , Fu Lu , Tang Jianhua , et al. Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants[J]. Journal of Hazardous Materials, 2018, 350, 1- 9.
doi: 10.1016/j.jhazmat.2018.02.014
|
28 |
Wang Yin , Wang Yun , Yu Lan , et al. Highly effective microwaveinduced catalytic degradation of Bisphenol A in aqueous solution using double-perovskite intercalated montmorillonite nanocomposite[J]. Chemical Engineering Journal, 2020, 390, 124550.
doi: 10.1016/j.cej.2020.124550
|
29 |
Xu Wentao , Chen Jianan , Qiu Yin , et al. Highly efficient microwave catalytic oxidation degradation of 4-nitrophenol over magnetically separable NiCo2O4-Bi2O2CO3 composite without adding oxidant[J]. Separation and Purification Technology, 2019, 213, 426- 436.
doi: 10.1016/j.seppur.2018.12.061
|
30 |
Qiu Yin , Zhou Jicheng . Highly effective and green microwave catalytic oxidation degradation of nitrophenols over Bi2O2CO3 based composites without extra chemical additives[J]. Chemosphere, 2019, 214, 319- 329.
doi: 10.1016/j.chemosphere.2018.09.125
|
31 |
王洁微. 光催化氧化提高难降解有机物可生化性的研究[D]. 上海: 上海师范大学, 2013.
|
32 |
廖文超. ZrOx-ZnO催化剂的制备及微波辅助光催化降解典型EDCs研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
33 |
郭春晓. 微波无极紫外灯直接光降解去除水中抗生素恩诺沙星机理研究[D]. 北京: 北京交通大学, 2017.
|
34 |
Lee H , Park S H , Park Y K , et al. Photocatalytic reactions of 2, 4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system[J]. Chemical Engineering Journal, 2015, 278, 259- 264.
doi: 10.1016/j.cej.2014.09.086
|
35 |
Zuo Shiyu , Li Dongya , Xu Haiming , et al. An integrated microwave-ultraviolet catalysis process of four peroxides for wastewater treatment: free radical generation rate and mechanism[J]. Chemical Engineering Journal, 2020, 380, 122434.
doi: 10.1016/j.cej.2019.122434
|
36 |
Ki S J , Jeon K J , Park Y K , et al. Improving removal of 4-chlorophenol using a TiO2 photocatalytic system with microwave and ultraviolet radiation[J]. Catalysis Today, 2017, 293/294, 15- 22.
doi: 10.1016/j.cattod.2016.12.023
|
37 |
Cheng Gong , Li Zhang , Sun Liming , et al. Application of microwave/electrodeless discharge ultraviolet/ozone sterilization technology in water reclamation[J]. Process Safety and Environmental Protection, 2020, 138, 148- 156.
doi: 10.1016/j.psep.2020.03.015
|