1 |
YU Jiangfang, TANG Lin, PANG Ya,et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation:Internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364:146-159. doi: 10.1016/j.cej.2019.01.163
|
2 |
INYANG M, GAO Bin, YAO Ying,et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. Bioresource Technology, 2012, 110:50-56. doi: 10.1016/j.biortech.2012.01.072
|
3 |
ABBAS Z,ALI S, RIZWAN M,et al. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar[J]. Arabian Journal of Geosciences, 2018, 11(16):448. doi: 10.1007/s12517-018-3790-1
|
4 |
CHENG Ning, WANG Bing, WU Pan,et al. Adsorption of emerging contaminants from water and wastewater by modified biochar:A review[J]. Environmental Pollution, 2021, 273:116448. doi: 10.1016/j.envpol.2021.116448
|
5 |
黄晓雅,李莲芳,朱昌雄. 生物炭老化对土壤重金属的固定效应研究进展[J]. 农业资源与环境学报,2022,39(1):157-164.
|
|
HUANG Xiaoya, LI Lianfang, ZHU Changxiong. Research progress on the fixation effect of biochar aging on heavy metals in soil[J]. Journal of Agricultural Resources and Environment,2022,39(1):157-164.
|
6 |
DING Yang, LIU Yunguo, LIU Shaobo,et al. Biochar to improve soil fertility:A review[J]. Agronomy for Sustainable Development, 2016, 36(2):36. doi: 10.1007/s13593-016-0372-z
|
7 |
ZHANG Peizhen, LI Yanfei, CAO Yaoyao,et al. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures[J]. Bioresource Technology, 2019, 285:121348. doi: 10.1016/j.biortech.2019.121348
|
8 |
AHMED M J, HAMEED B H. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants:A review[J]. Journal of Cleaner Production, 2020, 265:121762. doi: 10.1016/j.jclepro.2020.121762
|
9 |
ZHAO Bin, O’CONNOR D, ZHANG Junli,et al. Effect of pyrolysis temperature,heating rate,and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018, 174:977-987. doi: 10.1016/j.jclepro.2017.11.013
|
10 |
PANWAR N L, PAWAR A. Influence of activation conditions on the physicochemical properties of activated biochar:A review[J]. Biomass Conversion and Biorefinery, 2022, 12(3):925-947. doi: 10.1007/s13399-020-00870-3
|
11 |
LIANG Liping, XI Fenfen, TAN Weishou,et al. Review of organic and inorganic pollutants removal by biochar and biochar-based composites[J]. Biochar, 2021, 3(3):255-281. doi: 10.1007/s42773-021-00101-6
|
12 |
GODLEWSKA P, OK Y S, OLESZCZUK P. The dark side of black gold:Ecotoxicological aspects of biochar and biochar-amended soils[J]. Journal of Hazardous Materials, 2021, 403:123833. doi: 10.1016/j.jhazmat.2020.123833
|
13 |
马洁晨,汪新亮,张学胜,等. 不同热解温度龙虾壳生物炭特征及对Zn2+的吸附机制[J]. 生态与农村环境学报,2019,35(7):900-908.
|
|
MA Jiechen, WANG Xinliang, ZHANG Xuesheng,et al. Influence of pyrolysis temperature on characteristics and Zn2+ adsorptive mechanism of crayfish shell biochars[J]. Journal of Ecology and Rural Environment,2019,35(7):900-908.
|
14 |
ZHOU Lu, LIU Yunguo, LIU Shaobo,et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology, 2016, 218:351-359. doi: 10.1016/j.biortech.2016.06.102
|
15 |
|
|
KANG Caiyan, LI Qiuyan, LIU Jinyu,et al. Effect of biochar at different pyrolysis temperatures on the adsorption of Cd 2+ [J]. Industrial Water Treatment, 2021, 41(5):68-72. doi: 10.11894/iwt.2020-0786
|
16 |
|
|
WANG Zhanghong, GUO Haiyan, SHEN Fei,et al. Effects of pyrolysis conditions on the properties of biochar and its adsorption to N and P from aqueous solution[J]. Acta Scientiae Circumstantiae, 2015, 35(9):2805-2812. doi: 10.13671/j.hjkxxb.2014.1062
|
17 |
ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2013, 128:593-597. doi: 10.1016/j.biortech.2012.10.150
|
18 |
LI Xuhui, LI Kunquan, GENG Chunlei,et al. Biochar from microwave pyrolysis of artemisia slengensis:Characterization and methylene blue adsorption capacity[J]. Applied Sciences, 2019, 9(9):1813. doi: 10.3390/app9091813
|
19 |
YU Wenchao, LIAN Fei, CUI Guannan,et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution[J]. Chemosphere, 2018, 193:8-16. doi: 10.1016/j.chemosphere.2017.10.134
|
20 |
MA Ying, LIU Wujun, ZHANG Nan,et al. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J]. Bioresource Technology, 2014, 169:403-408. doi: 10.1016/j.biortech.2014.07.014
|
21 |
WANG Xiaopeng, IBRAHIM M M, TONG Chenxiao,et al. Influence of pyrolysis conditions on the properties and Pb 2+ and Cd 2+ adsorption potential of tobacco stem biochar[J]. BioResources, 2020, 15(2):4026-4051. doi: 10.15376/biores.15.2.4026-4051
|
22 |
|
|
XIAO Fangfang, ZHANG Yingying, CHENG Jianhua,et al. Adsorption properties of chitosan/magnetic biochar for Cu(Ⅱ) removal from solution[J]. Chinese Journal of Environmental Engineering, 2019, 13(5):1048-1055. doi: 10.12030/j.cjee.201810181
|
23 |
|
|
WANG Daohan, LI Jingyang, TANG Jiaxi. Adsorption of cadmium in solution by biochar at different pyrolysis temperatures[J]. Industrial Water Treatment, 2020, 40(1):18-23. doi: 10.11894/iwt.2018-1173
|
24 |
陈明茹,黄应平,张吉林,等. 羊粪生物炭对水体中镉的吸附[J]. 武汉大学学报(理学版),2022,68(6):612-620.
|
|
CHEN Mingru, HUANG Yingping, ZHANG Jilin,et al. Adsorption of cadmium in water by sheep manure biochar[J]. Journal of Wuhan University(Natural Science Edition),2022,68(6):612-620.
|
25 |
|
|
LI Weiguang, LUO Caiwu, LEI Lin,et al. Study on the adsorption performance of lotus leaf straw-based biochar to Cr(Ⅵ) in wastewater[J]. Applied Chemical Industry, 2022, 51(4):1004-1008. doi: 10.3969/j.issn.1671-3206.2022.04.020
|
26 |
朱俊波,赵建兵,周世萍,等. 花生壳生物炭去除水中铅镉离子的性能及吸附机理研究[J]. 西南林业大学学报(自然科学),2022,42(5):78-86.
|
|
ZHU Junbo, ZHAO Jianbing, ZHOU Shiping,et al. Study on adsorption performance and mechanism of peanut shell biochar for Pb2+ and Cd2+ in water[J]. Journal of Southwest Forestry University(Natural Sciences),2022,42(5):78-86.
|
27 |
陈佼,李晓媛,刘钰洁,等. 槟榔渣生物炭对水中亚甲基蓝的吸附特性及机制[J].工业水处理,2023,43(3):55-63.
|
|
CHEN Jiao, LI Xiaoyuan, LIU Yujie,et al. Adsorption characteristics and mechanism of methylene blue in aqueous solution by areca residue biochar[J]. Industrial Water Treatment,2023,43(3):55-63.
|
28 |
蔡思颖,张伟军,陈康,等. 中药渣生物炭的制备及其对水中四环素的吸附特性研究[J]. 安全与环境工程,2022,29(3):178-186.
|
|
CAI Siying, ZHANG Weijun, CHEN Kang,et al. Preparation of Chinese medicine wastes biochar and its adsorption characteristics to tetracycline in water[J]. Safety and Environmental Engineering,2022,29(3):178-186.
|
29 |
张娟,孙宇,黄贵琦,等. 辣椒秸秆生物炭对考马斯亮蓝染料的吸附性能研究[J].工业水处理,2022,42(2):118-123.
|
|
ZHANG Juan, SUN Yu, HUANG Guiqi,et al. Adsorption characteristics study on coomassie bright blue dye by hot pepper straw biochar[J]. Industrial Water Treatment,2022,42(2):118-123.
|
30 |
SAHU S, PAHI S, TRIPATHY S,et al. Adsorption of methylene blue on chemically modified lychee seed biochar:Dynamic,equilibrium,and thermodynamic study[J]. Journal of Molecular Liquids, 2020, 315:113743. doi: 10.1016/j.molliq.2020.113743
|
31 |
PHUONG D T M, LOC N X. Rice straw biochar and magnetic rice straw biochar for safranin O adsorption from aqueous solution[J]. Water, 2022, 14(2):186. doi: 10.3390/w14020186
|
32 |
SMITH K M, FOWLER G D, PULLKET S,et al. The production of attrition resistant,sewage-sludge derived,granular activated carbon[J]. Separation and Purification Technology, 2012, 98:240-248. doi: 10.1016/j.seppur.2012.07.026
|
33 |
WANG Wen, MA Xiulan, SUN Jing,et al. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar[J]. Spectroscopy Letters, 2019, 52(7):367-375. doi: 10.1080/00387010.2019.1648296
|
34 |
REGMI P, GARCIA MOSCOSO J L, KUMAR S,et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management, 2012, 109:61-69. doi: 10.1016/j.jenvman.2012.04.047
|
35 |
BASHIR S, ZHU Jun, FU Qingling,et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(12):11875-11883. doi: 10.1007/s11356-018-1292-z
|
36 |
LI Ruining, WANG Zhaowei, GUO Jialei,et al. Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves[J]. Water Science and Technology, 2018, 77(4):1127-1136. doi: 10.2166/wst.2017.636
|
37 |
BIAN Siyao, XU Shuang, YIN Zhibing,et al. An efficient strategy for enhancing the adsorption capabilities of biochar via sequential KMnO 4-promoted oxidative pyrolysis and H 2O 2 oxidation[J]. Sustainability, 2021, 13(5):2641. doi: 10.3390/su13052641
|
38 |
古玉. 腐殖酸改性小龙虾壳生物炭对水中亚甲基蓝的吸附去除[J]. 煤炭与化工,2021,44(10):154-160.
|
|
GU Yu. Adsorptive removal of methylene blue by humic acid modified crawfish shell biochar[J]. Coal and Chemical Industry,2021,44(10):154-160.
|
39 |
SUN Dezheng, LI Fayong, JIN Junwei,et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(Ⅱ) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829:154599. doi: 10.1016/j.scitotenv.2022.154599
|
40 |
AKGÜL G, MADEN T B, DIAZ E,et al. Modification of tea biochar with Mg,Fe,Mn and Al salts for efficient sorption of PO 4 3- and Cd 2+ from aqueous solutions[J]. Journal of Water Reuse and Desalination, 2019, 9(1):57-66. doi: 10.2166/wrd.2018.018
|
41 |
LIANG Jie, LI Xuemei, YU Zhigang,et al. Amorphous MnO 2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(Ⅱ) and Cd(Ⅱ)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6):5049-5058. doi: 10.1021/acssuschemeng.7b00434
|
42 |
ZHANG Ming, GAO Bin, YAO Ying,et al. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210:26-32. doi: 10.1016/j.cej.2012.08.052
|
43 |
WU Lipeng, WEI Changbin, ZHANG Shirong,et al. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil[J]. Journal of Cleaner Production, 2019, 235:901-909. doi: 10.1016/j.jclepro.2019.07.043
|
44 |
ZHANG Shuai, Honghong LÜ, TANG Jingchun,et al. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J]. Chemosphere, 2019, 217:686-694. doi: 10.1016/j.chemosphere.2018.11.040
|
45 |
RAJAPAKSHA A U, VITHANAGE M, AHMAD M,et al. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar[J]. Journal of Hazardous Materials, 2015, 290:43-50. doi: 10.1016/j.jhazmat.2015.02.046
|
46 |
Honghong LÜ, GAO Bin, HE Feng,et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue[J]. Chemical Engineering Journal, 2018, 335:110-119. doi: 10.1016/j.cej.2017.10.130
|
47 |
PENG Hongbo, GAO Peng, CHU Gang,et al. Enhanced adsorption of Cu(Ⅱ) and Cd(Ⅱ) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229:846-853. doi: 10.1016/j.envpol.2017.07.004
|
48 |
|
|
DENG Zihe, TIAN Fei, WU Zhansheng,et al. Modifications of walnut shell-based biocar and its adsorption for Bacillus subtilis SL-44[J]. Journal of Agro-Environment Science, 2022, 41(2):387-399. doi: 10.11654/jaes.2021-0583
|
49 |
PENG Peng, LANG Yinhai, WANG Xiaomei. Adsorption behavior and mechanism of pentachlorophenol on reed biochars:PH effect,pyrolysis temperature,hydrochloric acid treatment and isotherms[J]. Ecological Engineering, 2016, 90:225-233. doi: 10.1016/j.ecoleng.2016.01.039
|
50 |
YANG Chuanxi, ZHU Qing, DONG Wenping,et al. Preparation and characterization of phosphoric acid-modified biochar nanomaterials with highly efficient adsorption and photodegradation ability[J]. Langmuir, 2021, 37(30):9253-9263. doi: 10.1021/acs.langmuir.1c01468
|
51 |
DING Zhuhong, HU Xin, WAN Yongshan,et al. Removal of lead,copper,cadmium,zinc,and nickel from aqueous solutions by alkali-modified biochar:Batch and column tests[J]. Journal of Industrial and Engineering Chemistry, 2016, 33:239-245. doi: 10.1016/j.jiec.2015.10.007
|
52 |
刘文慧,王昱璇,陈丹丹,等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报,2021,42(6):1575-1582.
|
|
LIU Wenhui, WANG Yuxuan, CHEN Dandan,et al. Effect of aging on physicochemical properties of biochars[J]. Journal of Engineering Thermophysics,2021,42(6):1575-1582.
|
53 |
SUN Dezheng, LI Fayong, JIN Junwei,et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(Ⅱ) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829:154599. doi: 10.1016/j.scitotenv.2022.154599
|
54 |
王小平,龚诚,赖玲燕,等. 去除水体中PPCPs的4种改性新型吸附材料研究进展[J].工业水处理,2022,42(9):23-37.
|
|
WANG Xiaoping, GONG Cheng, LAI Lingyan,et al. Research progress of four new modified adsorbents for removal of PPCPs in water[J]. Industrial Water Treatment,2022,42(9):23-37.
|
55 |
CHAKRABORTY P, BANERJEE S, KUMAR S,et al. Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell:Isotherm,kinetics,thermodynamics and cost estimation[J]. Process Safety and Environmental Protection, 2018, 118:10-23. doi: 10.1016/j.psep.2018.06.015
|
56 |
NAGHDI M, TAHERAN M, BRAR S K,et al. A green method for production of nanobiochar by ball milling-optimization and characterization[J]. Journal of Cleaner Production, 2017, 164:1394-1405. doi: 10.1016/j.jclepro.2017.07.084
|
57 |
TAN Xiaofei, LIU Yunguo, ZENG Guangming,et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125:70-85. doi: 10.1016/j.chemosphere.2014.12.058
|
58 |
KHARE P, DILSHAD U, ROUT P K,et al. Plant refuses driven biochar:Application as metal adsorbent from acidic solutions[J]. Arabian Journal of Chemistry, 2017, 10:S3054-S3063. doi: 10.1016/j.arabjc.2013.11.047
|
59 |
ZHANG Ailin, LI Xin, XING Jia,et al. Adsorption of potentially toxic elements in water by modified biochar:A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):104196. doi: 10.1016/j.jece.2020.104196
|
60 |
CHEN Yaoning, LI Meiling, LI Yuanping,et al. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu 2+ and Cd 2+:Adsorption behavior and mechanisms[J]. Bioresource Technology, 2021, 321:124413. doi: 10.1016/j.biortech.2020.124413
|
61 |
WU Jiawen, WANG Tao, WANG Jiawei,et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar:Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754:142150. doi: 10.1016/j.scitotenv.2020.142150
|
62 |
CHOUDHARY M, KUMAR R, NEOGI S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye,Cu 2+ and Ni 2+ from water[J]. Journal of Hazardous Materials, 2020, 392:122441. doi: 10.1016/j.jhazmat.2020.122441
|
63 |
KOMNITSAS K, ZAHARAKI D, PYLIOTIS I,et al. Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals[J]. Waste and Biomass Valorization, 2015, 6(5):805-816. doi: 10.1007/s12649-015-9364-5
|
64 |
CAO Yaoyao, SHEN Guanghui, ZHANG Yang,et al. Impacts of carbonization temperature on the Pb(Ⅱ) adsorption by wheat straw-derived biochar and related mechanism[J]. Science of the Total Environment, 2019, 692:479-489. doi: 10.1016/j.scitotenv.2019.07.102
|
65 |
WANG Qian, WANG Bing, LEE Xinqing,et al. Sorption and desorption of Pb(Ⅱ) to biochar as affected by oxidation and pH[J]. Science of the Total Environment, 2018, 634:188-194. doi: 10.1016/j.scitotenv.2018.03.189
|
66 |
王宁,侯艳伟,彭静静,等. 生物炭吸附有机污染物的研究进展[J]. 环境化学,2012,31(3):287-295.
|
|
WANG Ning, HOU Yanwei, PENG Jingjing,et al. Research progess on sorption of orgnic contaminants to biochar[J]. Environmental Chemistry,2012,31(3):287-295.
|
67 |
BINH Q A, KAJITVICHYANUKUL P. Adsorption mechanism of dichlorvos onto coconut fibre biochar:The significant dependence of H-bonding and the pore-filling mechanism[J]. Water Science and Technology, 2019, 79(5):866-876. doi: 10.2166/wst.2018.529
|
68 |
DAI Jiawei, MENG Xiangfu, ZHANG Yuhu,et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water[J]. Bioresource Technology, 2020, 311:123455. doi: 10.1016/j.biortech.2020.123455
|
69 |
LI Longcheng, ZOU Dongsheng, XIAO Zhihua,et al. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use[J]. Journal of Cleaner Production, 2019, 210:1324-1342. doi: 10.1016/j.jclepro.2018.11.087
|
70 |
WANG Xilong, SATO T, XING Baoshan. Competitive sorption of pyrene on wood chars[J]. Environmental Science & Technology, 2006, 40(10):3267-3272. doi: 10.1021/es0521977
|
71 |
WANG Jinpeng, ZHANG Ming. Adsorption characteristics and mechanism of bisphenol A by magnetic biochar[J]. International Journal of Environmental Research and Public Health, 2020, 17(3):1075. doi: 10.3390/ijerph17031075
|
72 |
CHOUDHARY M, KUMAR R, NEOGI S. Activated biochar derived from opuntia ficus-indica for the efficient adsorption of malachite green dye,Cu 2+ and Ni 2+ from water[J]. Journal of Hazardous Materials, 2020, 392:122441. doi: 10.1016/j.jhazmat.2020.122441
|
73 |
ZHANG Ping, O’CONNOR D, WANG Yinan,et al. A green biochar/iron oxide composite for methylene blue removal[J]. Journal of Hazardous Materials, 2020, 384:121286. doi: 10.1016/j.jhazmat.2019.121286
|
74 |
YIN Zhibing, LIU Nian, BIAN Siyao,et al. Enhancing the adsorption capability of areca leaf biochar for methylene blue by K 2FeO 4-catalyzed oxidative pyrolysis at low temperature[J]. RSC Advances, 2019, 9(72):42343-42350. doi: 10.1039/c9ra06592j
|
75 |
TANG Lin, YU Jiangfang, PANG Ya,et al. Sustainable efficient adsorbent:Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal, 2018, 336:160-169. doi: 10.1016/j.cej.2017.11.048
|
76 |
MOHAMMED N A S, ABU-ZURAYK R A, HAMADNEH I,et al. Phenol adsorption on biochar prepared from the pine fruit shells:Equilibrium,kinetic and thermodynamics studies[J]. Journal of Environmental Management, 2018, 226:377-385. doi: 10.1016/j.jenvman.2018.08.033
|
77 |
QIAO Kaili, TIAN Weijun, BAI Jie,et al. Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons(PAHs) from aqueous solution[J]. Ecotoxicology and Environmental Safety, 2018, 149:80-87. doi: 10.1016/j.ecoenv.2017.11.027
|
78 |
|
|
BAI Yujie, ZHANG Aili, ZHOU Jiti. Research process in regeneration technologies of sorbents[J]. Liaoning Chemical Industry, 2012, 41(1):21-24. doi: 10.3969/j.issn.1004-0935.2012.01.007
|
79 |
LU P J, LIN H C, YU Wente,et al. Chemical regeneration of activated carbon used for dye adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(2):305-311. doi: 10.1016/j.jtice.2010.06.001
|
80 |
Ying LÜ, ZHANG Jingyi, ASGODOM M E,et al. Study on the degradation of accumulated bisphenol S and regeneration of magnetic sludge-derived biochar upon microwave irritation in the presence of hydrogen peroxide for application in integrated process[J]. Bioresource Technology, 2019, 293:122072. doi: 10.1016/j.biortech.2019.122072
|
81 |
SALVADOR F, MARTIN-SANCHEZ N, SANCHEZ-HERNANDEZ R,et al. Regeneration of carbonaceous adsorbents. part Ⅱ:Chemical,microbiological and vacuum regeneration[J]. Microporous and Mesoporous Materials, 2015, 202:277-296. doi: 10.1016/j.micromeso.2014.08.019
|
82 |
GUO Peng, XU Nan, LI Duo,et al. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand[J]. Chemosphere, 2018, 204:327-334. doi: 10.1016/j.chemosphere.2018.04.041
|
83 |
HALE S E, LEHMANN J, RUTHERFORD D,et al. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars[J]. Environmental Science & Technology, 2012, 46(5):2830-2838. doi: 10.1021/es203984k
|
84 |
Honghong LÜ, HE Yuhe, TANG Jingchun,et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218:1-7. doi: 10.1016/j.envpol.2016.08.014
|
85 |
ANJUM R, KRAKAT N, TOUFIQ REZA M,et al. Assessment of mutagenic potential of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test[J]. Ecotoxicology and Environmental Safety, 2014, 107:306-312. doi: 10.1016/j.ecoenv.2014.06.005
|
86 |
|
|
LUO Fei, SONG Jing, CHEN Mengfang. Generation,distribution and toxicity characteristics of polycyclic aromatic hydrocarbons during the preparation of biochar from rapeseed cake[J]. Journal of Agro-Environment Science, 2016, 35(11):2210-2215. doi: 10.11654/jaes.2016-0529
|
87 |
QIU Mengyi, SUN Ke, JIN Jie,et al. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars:The effect of feedstock,temperature,minerals,and properties[J]. Environmental Pollution, 2015, 206:298-305. doi: 10.1016/j.envpol.2015.07.026
|
88 |
|
|
BU Xiaoli, XUE Jianhui. Biochar effects on soil habitat and plant growth:A review[J]. Ecology and Environmental Sciences, 2014, 23(3):535-540. doi: 10.3969/j.issn.1674-5906.2014.03.025
|
89 |
HUANG Caide, WANG Weiyue, YUE Shizhong,et al. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness[J]. Environmental Pollution, 2020, 263:114586. doi: 10.1016/j.envpol.2020.114586
|
90 |
LIAO Shaohua, PAN Bo, LI Hao,et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn,wheat and rice seedlings[J]. Environmental Science & Technology, 2014, 48(15):8581-8587. doi: 10.1021/es404250a
|
91 |
SMITH C R, BUZAN E M, LEE J W. Potential impact of biochar water-extractable substances on environmental sustainability[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1):118-126. doi: 10.1021/sc300063f
|
92 |
WANG Zhenyu, ZHENG Hao, LUO Ye,et al. Characterization and influence of biochars on nitrous oxide emission from agricultural soil[J]. Environmental Pollution, 2013, 174:289-296. doi: 10.1016/j.envpol.2012.12.003
|