1 |
|
|
QIU Xiaoyong, YANG Changhe. Research progress of persulfate-assisted discharge plasma technology in wastewater treatment[J]. Industrial Water Treatment, 2022, 42(7):44-51. doi: 10.19965/j.cnki.iwt.2021-0510
|
2 |
|
|
QI Xujian, WEI Fanhao, FAN Jiawei. Research progress on treatment of antibiotics and their resistance genes by advanced oxidation technologies[J]. Industrial Water Treatment, 2022, 42(12):55-64. doi: 10.19965/j.cnki.iwt.2021-1143
|
3 |
冀晓薇,肖利萍,佟德利. 高级氧化与高效吸附联用技术在水处理中的应用进展[J]. 水资源与水工程学报,2010,21(3):48-51.
|
|
JI Xiaowei, XIAO Liping, TONG Deli. Application progress of the hyphenated technique of AOPs and high efficient absorption in water treatment[J]. Journal of Water Resources and Water Engineering,2010,21(3):48-51.
|
4 |
OLLER I, MALATO S, SÁNCHEZ-PÉREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination:A review[J]. Science of the Total Environment, 2011, 409(20):4141-4166. doi: 10.1016/j.scitotenv.2010.08.061
|
5 |
|
|
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2):356-363. doi: 10.16085/j.issn.1000-6613.2021-0756
|
6 |
LI Jianzhang, ZHONG Junbo, SI Yujun,et al. Improved solar-driven photocatalytic performance of BiOI decorated TiO 2 benefiting from the separation properties of photo-induced charge carriers[J]. Solid State Sciences, 2016, 52:106-111. doi: 10.1016/j.solidstatesciences.2015.12.020
|
7 |
SARAVANAKUMAR K, RAMJAN M M, SURESH P,et al. Fabrication of highly efficient visible light driven Ag/CeO 2 photocatalyst for degradation of organic pollutants[J]. Journal of Alloys and Compounds, 2016, 664:149-160. doi: 10.1016/j.jallcom.2015.12.245
|
8 |
GUO Shien, TANG Yunqi, XIE Ying,et al. P-doped tubular g-C 3N 4 with surface carbon defects:Universal synthesis and enhanced visible-light photocatalytic hydrogen production[J]. Applied Catalysis B:Environmental, 2017, 218:664-671. doi: 10.1016/j.apcatb.2017.07.022
|
9 |
钟欣,阮韬,白壑平,等. 铜掺杂钒酸铋光催化降解橙黄Ⅱ废水及其机理[J]. 环境工程学报,2021,15(3):857-866.
|
|
ZHONG Xin, RUAN Tao, BAI Heping,et al. Preparation and photocatalytic properties of Cu-BiVO4 catalyst for the degradation of orange Ⅱ under visible light[J]. Chinese Journal of Environmental Engineering,2021,15(3):857-866.
|
10 |
MAK K F, LEE Changgu, HONE J,et al. Atomically thin MoS₂:A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13):136805. doi: 10.1103/physrevlett.105.136805
|
11 |
李能,孔周舟,陈星竹,等. 新型二维材料光催化与电催化研究进展[J]. 无机材料学报,2020,35(7):735-747.
|
|
LI Neng, KONG Zhouzhou, CHEN Xingzhu,et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis[J]. Journal of Inorganic Materials,2020,35(7):735-747.
|
12 |
王颖,杨传玺,王小宁,等. 二维光催化材料研究进展[J]. 有色金属科学与工程,2021,12(2):30-42.
|
|
WANG Ying, YANG Chuanxi, WANG Xiaoning,et al. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering,2021,12(2):30-42.
|
13 |
孙洋洋. 磁性氧化石墨烯/TiO2复合光催化剂的制备及其光催化降解染料废水的研究[D]. 西安:长安大学,2015.
|
|
SUN Yangyang. Preparation of magnetic GO/TIO2 composite photocatalyst and photocatalytic activity of dye wastewater[D]. Xi’an:Chang’an University,2015.
|
14 |
LI Xiaowei, XIA Jiexiang, ZHU Wenshuai,et al. Facile synthesis of few-layered MoS 2 modified BiOI with enhanced visible-light photocatalytic activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 511:1-7. doi: 10.1016/j.colsurfa.2016.09.033
|
15 |
ZHAO Shanshan, CHEN Shuo, YU Hongtao,et al. G-C 3N 4/TiO 2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation[J]. Separation and Purification Technology, 2012, 99:50-54. doi: 10.1016/j.seppur.2012.08.024
|
16 |
NAGUIB M, KURTOGLU M, PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2 [J]. Advanced Materials, 2011, 23(37):4248-4253. doi: 10.1002/adma.201102306
|
17 |
BARSOUM M. The MN+1AXN phases:A new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4):201-281. doi: 10.1016/s0079-6786(00)00006-6
|
18 |
常春,黄心悦,王琼. 二维层状纳米材料MXenes的制备方法及其在光催化领域中的应用[J]. 重庆理工大学学报:自然科学,2021,35(12):198-209.
|
|
CHANG Chun, HUANG Xinyue, WANG Qiong. Preparation of two-dimensional layered nanomaterials MXenes and its application in photocatalysis[J]. Journal of Chongqing University of Technology:Natural Science,2021,35(12):198-209.
|
19 |
赵文军,秦疆洲,尹志凡,等. 新型2D MXenes纳米材料在光催化领域的应用[J]. 化学进展,2019,31(12):1729-1736.
|
|
ZHAO Wenjun, QIN Jiangzhou, YIN Zhifan,et al. 2D MXenes for photocatalysis[J]. Progress in Chemistry,2019,31(12):1729-1736.
|
20 |
WANG Hui, PENG Rui, HOOD Z D,et al. Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation[J]. ChemSusChem, 2016, 9(12):1490-1497. doi: 10.1002/cssc.201600165
|
21 |
严康,关云锋,丛野,等. 溶剂热氧化少层Ti3C2MXene制备二维TiO2/Ti3C2复合光催化剂[J]. 无机化学学报,2019,35(7):1203-1211.
|
|
YAN Kang, GUAN Yunfeng, CONG Ye,et al. Preparation of two dimensional TiO2/Ti3C2 photocatalyst by solvothermal oxidation of few-layered Ti3C2 MXene[J]. Chinese Journal of Inorganic Chemistry,2019,35(7):1203-1211.
|
22 |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2:16098. doi: 10.1038/natrevmats.2016.98
|
23 |
ANASORI B, XIE Yu, BEIDAGHI M,et al. Two-dimensional,ordered,double transition metals carbides(MXenes)[J]. ACS Nano, 2015, 9(10):9507-9516. doi: 10.1021/acsnano.5b03591
|
24 |
SRIVASTAVA P, MISHRA A, MIZUSEKI H,et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti 3C 2 MXene[J]. ACS Applied Materials & Interfaces, 2016, 8(36):24256-24264. doi: 10.1021/acsami.6b08413
|
25 |
WANG Xuefeng, SHEN Xi, GAO Yurui,et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti 3C 2X[J]. Journal of the American Chemical Society, 2015, 137(7):2715-2721. doi: 10.1021/ja512820k
|
26 |
FENG Aihu, YU Yun, WANG Yong,et al. Two-dimensional MXene Ti 3C 2 produced by exfoliation of Ti 3AlC 2 [J]. Materials & Design, 2017, 114:161-166. doi: 10.1016/j.matdes.2016.10.053
|
27 |
NAGUIB M, MASHTALIR O, CARLE J,et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2):1322-1331. doi: 10.1021/nn204153h
|
28 |
LI Tengfei, YAO Lulu, LIU Qinglei,et al. Fluorine-free synthesis of high-purity Ti 3C 2T x (T=OH,O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57(21):6115-6119. doi: 10.1002/anie.201800887
|
29 |
WANG Changda, SHOU Hongwei, CHEN Shuangming,et al. MXene synthesis:HCl-based hydrothermal etching strategy toward fluoride-free MXenes[J]. Advanced Materials, 2021, 33(27):2170209. doi: 10.1002/adma.202170209
|
30 |
KAMYSBAYEV V, FILATOV A S, HU Huicheng,et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science, 2020, 369(6506):979-983. doi: 10.1126/science.aba8311
|
31 |
LI Youbing, SHAO Hui, LIN Zifeng,et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8):894-899. doi: 10.1038/s41563-020-0657-0
|
32 |
SUN Wanmei, SHAH S A, CHEN Yexiao,et al. Electrochemical etching of Ti 2AlC to Ti 2CT x (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A, 2017, 5(41):21663-21668. doi: 10.1039/c7ta05574a
|
33 |
XU Chuan, WANG Libin, LIU Zhibo,et al. Large-area high-quality 2D ultrathin Mo 2C superconducting crystals[J]. Nature Materials, 2015, 14(11):1135-1141. doi: 10.1038/nmat4374
|
34 |
PANG Weikong, LOW I M, SUN Zhengming. In situ high-temperature diffraction study of the thermal dissociation of Ti 3AlC 2 in vacuum[J]. Journal of the American Ceramic Society, 2010, 93(9):2871-2876. doi: 10.1111/j.1551-2916.2010.03764.x
|
35 |
NAGUIB M, HALIM J, LU Jun,et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43):15966-15969. doi: 10.1021/ja405735d
|
36 |
KURTOGLU M, NAGUIB M, GOGOTSI Y,et al. First principles study of two-dimensional early transition metal carbides[J]. MRS Communications, 2012, 2(4):133-137. doi: 10.1557/mrc.2012.25
|
37 |
XIE Yu, NAGUIB M, MOCHALIN V N,et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society, 2014, 136(17):6385-6394. doi: 10.1021/ja501520b
|
38 |
WANG H W, NAGUIB M, PAGE K,et al. Resolving the structure of Ti 3C 2T x MXenes through multilevel structural modeling of the atomic pair distribution function[J]. Chemistry of Materials, 2016, 28(1):349-359. doi: 10.1021/acs.chemmater.5b04250
|
39 |
HARRIS K J, BUGNET M, NAGUIB M,et al. Direct measurement of surface termination groups and their connectivity in the 2D MXene V 2CT x using NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2015, 119(24):13713-13720. doi: 10.1021/acs.jpcc.5b03038
|
40 |
HOPE M A, FORSE A C, GRIFFITH K J,et al. NMR reveals the surface functionalisation of Ti 3C 2 MXene[J]. Physical Chemistry Chemical Physics:PCCP, 2016, 18(7):5099-5102. doi: 10.1039/c6cp00330c
|
41 |
MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
|
42 |
HABIB T, ZHAO Xiaofei, SHAH S A,et al. Oxidation stability of Ti 3C 2T x MXene nanosheets in solvents and composite films[J]. Npj 2D Materials and Applications, 2019, 3:8. doi: 10.1038/s41699-019-0089-3
|
43 |
ZHAO Xiaofei, VASHISTH A, PREHN E,et al. Antioxidants unlock shelf-stable Ti 3C 2T x (MXene) nanosheet dispersions[J]. Matter, 2019, 1(2):513-526. doi: 10.1016/j.matt.2019.05.020
|
44 |
FAGAN R, MCCORMACK D E, DIONYSIOU D D,et al. A review of solar and visible light active TiO 2 photocatalysis for treating bacteria,cyanotoxins and contaminants of emerging concern[J]. Materials Science in Semiconductor Processing, 2016, 42:2-14. doi: 10.1016/j.mssp.2015.07.052
|
45 |
ZHUANG Yan, LIU Yunfei, MENG Xianfeng. Fabrication of TiO 2 nanofibers/MXene Ti 3C 2 nanocomposites for photocatalytic H 2 evolution by electrostatic self-assembly[J]. Applied Surface Science, 2019, 496:143647. doi: 10.1016/j.apsusc.2019.143647
|
46 |
IQBAL M A, TARIQ A, ZAHEER A,et al. Ti 3C 2-MXene/bismuth ferrite nanohybrids for efficient degradation of organic dyes and colorless pollutants[J]. ACS Omega, 2019, 4(24):20530-20539. doi: 10.1021/acsomega.9b02359
|
47 |
ZOU Xue, ZHAO Xuesong, ZHANG Jiaxing,et al. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene-Ti 3C 2/MoS 2 under visible light irradiation[J]. Journal of Hazardous Materials, 2021, 413:125424. doi: 10.1016/j.jhazmat.2021.125424
|
48 |
FANG Yu, CAO Yang, CHEN Qianlin. Synthesis of an Ag 2WO 4/Ti 3C 2 Schottky composite by electrostatic traction and its photocatalytic activity[J]. Ceramics International, 2019, 45(17):22298-22307. doi: 10.1016/j.ceramint.2019.07.256
|
49 |
VIGNESHWARAN S, PARK C M, MEENAKSHI S. Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal[J]. Separation and Purification Technology, 2021, 258:118003. doi: 10.1016/j.seppur.2020.118003
|
50 |
GAO Yupeng, WANG Libo, ZHOU Aiguo,et al. Hydrothermal synthesis of TiO 2/Ti 3C 2 nanocomposites with enhanced photocatalytic activity[J]. Materials Letters, 2015, 150:62-64. doi: 10.1016/j.matlet.2015.02.135
|
51 |
PENG Chao, YANG Xianfeng, LI Yuhang,et al. Hybrids of two-dimensional Ti 3C 2 and TiO 2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(9):6051-6060. doi: 10.1021/acsami.5b11973
|
52 |
|
|
ZHAO Yingxin, WANG Yashu, JI Min,et al. Research progress in the removal of pharmaceuticals and personal care products(PPCPs) from water by adsorption method[J]. Industrial Water Treatment, 2017, 37(6):1-5. doi: 10.11894/1005-829x.2017.37(6).001
|
53 |
EVGENIDOU E N, KONSTANTINOU I K, LAMBROPOULOU D A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters:A review[J]. Science of the Total Environment, 2015, 505:905-926. doi: 10.1016/j.scitotenv.2014.10.021
|
54 |
SUI Qian, HUANG Jun, DENG Shubo,et al. Occurrence and removal of pharmaceuticals,caffeine and DEET in wastewater treatment plants of Beijing,China[J]. Water Research, 2010, 44(2):417-426. doi: 10.1016/j.watres.2009.07.010
|
55 |
WANG Hexing, WANG Na, WANG Bin,et al. Antibiotics detected in urines and adipogenesis in school children[J]. Environment International, 2016, 89/90:204-211. doi: 10.1016/j.envint.2016.02.005
|
56 |
CAI Tao, WANG Longlu, LIU Yutang,et al. Ag 3PO 4/Ti 3C 2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Applied Catalysis B:Environmental, 2018, 239:545-554. doi: 10.1016/j.apcatb.2018.08.053
|
57 |
|
|
JING Jiang, XIAO Xiuchan, ZHOU Zheng,et al. Research progress in the advanced treatment of dyeing and printing wastewater[J]. Textile Auxiliaries, 2018, 35(6):8-12. doi: 10.3969/j.issn.1004-0439.2018.06.002
|
58 |
LUO Shanshan, WANG Ran, YIN Juanjuan,et al. Preparation and dye degradation performances of self-assembled MXene-Co 3O 4 nanocomposites synthesized via solvothermal approach[J]. ACS Omega, 2019, 4(2):3946-3953. doi: 10.1021/acsomega.9b00231
|
59 |
|
|
SUN Xuan, BAI Xue, CAO Chufeng,et al. Adsorption of Methylene Blue on MXene modified polyester fabric[J]. China Dyeing & Finishing, 2022, 48(4):62-66. doi: 10.3321/j.issn.1000-4017.2022.04.014
|