[1] 冯叶,杨立中,陈进斌,等. 废水生物脱氮低温硝化研究进展[J]. 水处理技术,2014,40(3):5-10.
[2] 马春,金仁村. 低温废水生物脱氮工艺的研究进展[J]. 工业水处理,2012,32(6):1-5.
[3] Wu Lei,Wang Jun,Liu Xia. Enhanced nitrogen removal under lowtemperature and high-load conditions by optimization of the operating modes and control parameters in the CAST system for municipal wastewater[J]. Desalination and Water Treatment,2015,53(6): 1683-1698.
[4] Yang Min,Sun Peide,Wang Ruyi,et al. Simulation and optimization of ammonia removal at low temperature for a double channel oxidation ditch based on fully coupled activated sludge model(FCASM): A full-scale study[J]. Bioresource Technology,2013,143:538-548.
[5] 王阿华,杨小丽,叶峰. 南方地区污水处理厂低温生物脱氮的对策研究[J]. 给水排水,2009,35(10):28-33.
[6] 滕文民,张爱华,王风翔,等. 高寒地区城市污水处理厂的建设与运行[J]. 中国给水排水,2010,26(24):100-104.
[7] Almomani F A,Delatolla R,Ormeci B. Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1 ℃[J]. Environmental Technology,2014,35(13):1596-1604.
[8] Gapes D J,Keller J. Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms[J]. Process Biochemistry,2009,44:43-53.
[9] Ahmadi M,Izanloo H,Alian A M,et al. Upgrading of kish island markazi wastewater treatment plant by MBBR[J]. Journal of Water Reuse and Desalination,2011,1(4):243-249.
[10] Falletti L,Conte L,Zaggia A. Small wastewater treatment plants in Italy:Situation and case studies of upgrading with advanced technologies[J]. Desalination and Water Treatment,2013,51(10): 2402-2410.
[11] 韩萍,许斌,宋美芹,等. 团岛污水厂MBBR工艺的升级改造及运行效果[J]. 中国给水排水,2014,30(12):110-114.
[12] 段存礼,顾瑞环,程俊涛,等. 青岛李村河污水厂升级改造工程设计及运行[J]. 中国给水排水,2011,27(12):66-70.
[13] Qin Jianjun,Wai M N,Tao Guihe, et al. Membrane bioreactor study for reclamation of mixed sewage mostly from industrial sources[J]. Separation and Purification Technology,2007,53(3):296-300.
[14] Sibag M,Kim H. Evaluating the performance of activated sludge ammonia oxidizing bacteria in a lab-scale alternating hypoxic/oxic membrane bioreactor[J]. Chemical Engineering Journal,2014, 255(7):670-676.
[15] 崔迎,褚文伟,万方. 低温条件下A2/O-MBR工艺脱氮效率试验研究[J]. 给水排水,2014,40(12):26-30.
[16] 黄菲,梅晓洁,王志伟,等. 冬季低温下MBR与CAS工艺运行及微生物群落特征[J]. 环境科学,2014,35(3):1002-1008.
[17] Arévalo J,Ruiz L M,Pérez J,et al. Effect of temperature on membrane bioreactor performance working with high hydraulic and sludge retention time[J]. Biochemical Engineering Journal,2014,88(28):42-49.
[18] 吴伟龙,杨璐华,杨飞飞,等. 低温条件下BAF+SPD组合工艺对滇池入湖河水的脱氮效果[J]. 环境工程学报,2013,7(12): 4597-4602.
[19] 韩梅. 悬浮填料——沸石BAF对低温水中氨氮的去除特性及机制研究[D]. 哈尔滨:哈尔滨工业大学,2014.
[20] 毕学军,赵方超,邢尚生,等. 复合铁酶促活性污泥抗低温硝化能力的研究[J]. 中国给水排水,2013,29(19):18-21.
[21] 陈显峰. MSBR工艺生产性优化研究[D]. 青岛:青岛理工大学,2014.
[22] 高静,李华伟,徐丽,等. 低温下生物增效技术对去除氨氮效果的改善[J]. 中国给水排水,2013,29(19):34-36.
[23] Head M A,Oleszkiewicz J A. Bioaugmentation for nitrification at cold temperatures[J]. Water Research,2004,38(3):523-530.
[24] Hao Yun,Jiang Xiuguang,Tian Qing, et al. Isolation and identification of nitrobacteria adapted to low temperature[J]. Advanced Materials Research,2012,518:406-410.
[25] 刘智晓,胡春萍,詹卫东,等. 侧流污泥生物强化技术及其在污水厂升级改造中的适用性[J]. 中国给水排水,2010,26(16):1-6.
[26] Salem S,Berends D H,van der Roest H F,et al. Full-scale application of the BABE technology[J]. Water Science & Technology, 2004,50(7):87-96.
[27] Hommel B,Zandt E V D,Berends D,et al. First application of the BABE process at 's-Hertogenbosch WWTP[C]. Proceedings of the Water Environment Federation,2005:5227-5236.
[28] Wang Shaobin,Peng Yuelian. Natural zeolites as effective adsorbents in water and wastewater treatment[J]. Chemical Engineering Journal,2010,156(1):11-24.
[29] Miladinovic N,Weatherley L R. Intensification of ammonia removal in a combined ion-exchange and nitrification column[J]. Chemical Engineering Journal,2008,135(1/2):15-24.
[30] He Shengbing,Xue Guang,Kong Hainan. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load[J]. Journal of Hazardous Materials, 2007,143(1/2):291-295.
[31] 李倩,曹国凭,郑兴灿,等. 悬浮填料强化硝化功能及温度影响试验研究[J]. 中国给水排水,2013,29(5):50-54.
[32] Luo Jinghai,Hao Tianwei,Wei Li,et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research,2014,62(7):127-135.
[33] Huang Weili,Cai Wei,Huang He,et al. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge[J]. Water Research,2015,68:423-431.
[34] Li Anjie,Li Xiaoyan,Yu Hanqing. Aerobic sludge granulation facilitated by activated carbon for partial nitrification treatment of ammonia-rich wastewater[J]. Chemical Engineering Journal,2013, 218(3):253-259.
[35] Bao Ruiling,Yu Shuili,Wu Jiapei,et al. Contaminants conversion processes and removal by aerobic granular sludge at low temperature[J]. Journal of Biotechnology,2008,136(93):269-302.
[36] de Kreuk M K,Pronk M,van Loosdrecht M C M. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures[J]. Water Research, 2005,39(18):4476-4484.
[37] Huang Zhaosong,Qie Yan,Wang Zhende,et al. Application of deepsea psychrotolerant bacteria in wastewater treatment by aerobic dynamic membrane bioreactors at low temperature[J]. Journal of Membrane Science,2015,475:47-56.
[38] Kim J,Jung M,Park S,et al. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil[J]. Environmental Microbiology,2012,14(6):1528-1543.
[39] Bai Yaohui,Sun Qinghua,Wen Donghui,et al. Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems[J]. FEMS Microbiol. Ecol.,2012,80(2):323-330.
[40] Schleper C. Ammonia oxidation:Different niches for bacteria and archaea?[J]. The ISME Journal,2010,4(9):1092-1094.
[41] Martens-Habbena W,Berube P M,Urakawa H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature,2009,461:976-979.
[42] 陈杨武,胡爽,方露,等. 氨氧化古菌及其对环境因子的响应研究进展[J]. 应用与环境生物学报,2014,20(6):1117-1123.
[43] 邹雨璇,祝贵兵,冯晓娟,等. 低温条件下湿地氨氮强化净化技术及其氨氧化微生物机制[J]. 环境科学学报,2014,34(4): 864-871. |