[1] Carvalho G,Lemos P C,Oehmen A,et al. Denitrifying phosphorus removal:Linking the process performance with the microbial com-munity structure[J]. Water Research,2007,41(19):4383-4396.
[2] He S,Bishop F I,Mc Mahon K D. Bacterial community and 'Candi-datus Accumulibacter' population dynamics in laboratory-scale en-hanced biological phosphorus removal reactors[J]. Applied and En-vironmental Microbiology,2010,76(16):5479-5487.
[3] Slater F R,Johnson C R,Blackall L L,et al. Monitoring associations between cladelevel variation,overall community structure and eco-system function in enhanced biological phosphorus removal(EBPR) systems using terminal-restriction fragment length polymorphism(T-RFLP)[J]. Water Research,2010,44(17):4908-4923.
[4] Peterson S B,Warnecke F,Madejska J,et al. Environmental distri-bution and population biology of the genus accumulibacter,a prima-ry agent of biological phosphorus removal in activated sludge[J]. Environmental Microbiology,2008,10(10):2692-2703.
[5] Martin H G,Ivanova N K,Victor W,et al. Metagenomic analysis of two enhanced biological phosphorus removal(EBPR) sludge com-munities[J]. Nature Biotechnology,2006,24(10):1263-1269.
[6] Flowers J J,He S,Malfatti S,et al. Comparative genomics of two 'Candidatus Accumulibacter' clades performing biological phosphorus removal[J]. Isme J,2013,7(12):2301-2314.
[7] Kim J M,Lee H J,Kim S Y,et al. Analysis of the fine-scale popula-tion structure of 'Candidatus Accumulibacter Phosphatis' in enhanced biological phosphorus removal sludge,using fluorescence in situ hy-bridization and flow cytometric sorting[J]. Applied and Environmen-tal Microbiology,2010,76(12):3825-3835.
[8] Oehmen A,Carvalho G,Freitas F,et al. Assessing the abundance and activity of denitrifying polyphosphate accumulating organisms through molecular and chemical techniques[J]. Water Science and Technology,2010,61(8):2061-2068.
[9] Kim J M,Lee H J,Lee D S,et al. Characterization of the denitrifica-tion-associated phosphorus uptake properties of 'Candidatus Accumu-libacter Phosphatis' clades in sludge subjected to enhanced biologi-cal phosphorus removal[J]. Applied and Environmental Microbiolo-gy,2013,79(6):1969-1979.
[10] Flowers J J,He S M,Yilmaz S,et al. Denitrification capabilities of two biological phosphorus removal sludges dominated by different 'Candidatus Accumulibacter' clades[J]. Environmental Microbio-logy Reports,2009,1(6):583-588.
[11] Tavares P,Pereira A S,Moura J J,et al. Metalloenzymes of the deni-trification pathway[J]. Journal of Inorganic Biochemistry,2006, 100(12):2087-2100.
[12] Mao Y,Yu K,Xia Y,et al. Genome reconstruction and gene expres-sion of 'Candidatus Accumulibacter Phosphatis' clade ⅠB perform-ing biological phosphorus removal[J]. Environmental Science & Technology,2014,48(17):10363-10371.
[13] 曾薇,李博晓,王向东,等. MUCT短程硝化和反硝化除磷系统中Candidatus Accumulibacter的代谢活性和菌群结构[J]. 中国环境科学,2013,33(7):1298-1308.
[14] 李博晓. 反硝化除磷系统中聚磷菌菌群功能与群落分布研究[D]. 北京:北京工业大学,2013.
[15] Vargas M,Guisasola A,Artigues A,et al. Comparison of a nitrite-based anaerobic-anoxic EBPR system with propionate or acetate as electron donors[J]. Process Biochemistry,2011,46(3):714-720.
[16] He S,McMahon K D. Microbiology of'Candidatus Accumulibacter' in activated sludge[J]. Microbial Biotechnology,2011,4(5):603-619.
[17] Oehmen A,Lopez-Vazquez C M,Carvalho G,et al. Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus remo-val processes[J]. Water Research,2010,44(15):4473-4486.
[18] Lanham A B,Moita R,Lemos P C,et al. Long-term operation of a reactor enriched in Accumulibacter clade Ⅰ DPAOs:performance with nitrate,nitrite and oxygen[J]. Water Science & Technology, 2011,63(2):352.
[19] Welles L,Tian W D,Saad S,et al. Accumulibacter clades Type Ⅰ and Ⅱ performing kinetically different glycogen-accumulating or-ganisms metabolisms for anaerobic substrate uptake[J]. Water Re-search,2015,83:354-366.
[20] Erdal U G,Erdal Z K,Randall C W. The competition between PAOs and GAOs in EBPR systems at different temperatures and the effec-ts on system performance[J]. Water Sci. Technol.,2003,47(11):1-8.
[21] Erdal U G,Erdal Z K,Daigger G T,et al. Is it PAO-GAO competi-tion or metabolic shift in EBPR system? Evidence form an experimental study[J].Water Sci. Technol.,2008,58(6):1329-1334.
[22] Tian W,Lopez-Vazquez C M,Li W,et al. Occurrence of PAOI in a low temperature EBPR system[J]. Chemosphere,2013,92(10):1314-1320.
[23] Brdjanovic D,van Loosdrecht M C M,Hooijmans C M,et al. Mini-mal aerobic sludge retention time in biological phosphorus removal systems[J]. Biotechnology and Bioengeering,1998,60(3):326-332.
[24] Freitas F,Temudo M F,Carvalho G,et al. Robustness of sludge en-riched with short SBR cycles for biological nutrient removal[J]. Bioresource Technology,2009,100(6):1969-1976.
[25] Winkler M K H,Bassin J P,Kleerebezem R,et al. Selective sludge removal in a segregated aerobic granular biomass system as a strate-gy to control PAO-GAO competition at high temperatures[J]. Wa-ter Research,2011,45(11):3291-3299.
[26] Ong Y H,Chua A S M,Fukushima T,et al. High-temperature EBPR process:The performance,analysis of PAOs and GAOs and the fine-scale population study of 'Candidatus Accumulibacter Phospha-tis'[J]. Water Research,2014,64:102-112.
[27] Brdjanovic D,van Loosdrecht M C M,Hooijmans C M,et al. Effect of polyphosphate limitation on the anaerobic metabolism of phos-phorus-accumulating microorganisms[J]. Applied Microbiology and Biotechnology,1998,50(2):273-276.
[28] Zhou Y,Pijuan M,Zeng R J,et al. Could polyphosphate-accumu-lating organisms(PAOs) be glycogen-accumulating organisms (GAOs)[J]. Water Research,2008,42(10/11):2361-2368.
[29] Acevedo B,Oehmen A,Carvalho G,et al. Metabolic shift of polyp-hosphate-accumulating organisms with different levels of polyphosphate storage[J]. Water Research,2012,46(6):1889-1900.
[30] Skennerton C T,Barr J J,Slater F R, et al. Expanding our view of genomic diversity in Candidatus Accumulibacter clades[J]. Envi-ronmental Microbiology,2015,17(5):1574-1585.
[31] Hesselmann R P X,Von Rummell R,Resnick S M,et al. Anaerobic metabolism of bacteria performing enhanced biological phosphate removal[J]. Water Research,2000,34:3487-3494.
[32] Wilmes P,Andersson A F,Lefsrud M G,et al. Community proteo-genomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal[J]. Isme J,2008,2(8):853-864.
[33] Wexler M,Richardson D J,Bond P L. Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal[J]. Environ. Microbiol.,2009,11(12):3029-3044.
[34] He S,McMahon K D.'Candidatus Accumulibacter' gene expression in response to dynamic EBPR conditions[J]. Isme J,2011,5(2):329-340.
[35] He S,Kunin V,Haynes M,et al. Metatranscriptomic array analysis of'Candidatus Accumulibacter Phosphatis'-enriched enhanced biological phosphorus removal sludge[J]. Environmental Micrabi-ology,2010,12(5):1205-1217.
[36] Smolders G J F,van der Meij J,van Loosdrecht M C M,et al. Model of the anaerobic metabolism of the biological phosphorus removal process:stoichiometry and pH influence[J]. Biotechnology and Bio-engineering,1994,44(6):837-848.
[37] Schuler A J,Jenkins D.Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents,part Ⅰ:experimental results and comparison with metabolic models[J]. Water Environment Research,2003,75(6):485-498.
[38] Mino T,Van Loosdrecht M C M,Heijnen J J. Microbiology and bio-chemistry of the enhanced biological phosphateremoval process[J]. Water Research,1998,32(11):3193-3207. |