1 |
赵维电,王新华,高宝玉. A/O-生物膜系统处理煤化工废水[J].环境工程学报,2012,6(10):3481-3484.
|
|
ZHAO Weidian, WANG Xinhua, GAO Baoyu. Treatment of coal chemical industry wastewater by an A/O-biofilm pilot system[J].Chinese Journal of Environmental Engineering,2012,6(10):3481-3484.
|
2 |
MENG Fangang, ZHANG Shaoqing,OH Y,et al. Fouling in membrane bioreactors:An updated review[J]. Water Research, 2017, 114:151-180. doi: 10.1016/j.watres.2017.02.006
|
3 |
BAGHERI M, MIRBAGHERI S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology, 2018, 258:318-334. doi: 10.1016/j.biortech.2018.03.026
|
4 |
YE Zhiping, YANG Jiaqian, ZHONG Na,et al. Tackling environmental challenges in pollution controls using artificial intelligence:A review[J]. Science of the Total Environment, 2020, 699:134279. doi: 10.1016/j.scitotenv.2019.134279
|
5 |
GHAEDI A M, VAFAEI A.Applications of artificial neural networks for adsorption removal of dyes from aqueous solution:A review[J]. Advances in Colloid and Interface Science, 2017, 245:20-39. doi: 10.1016/j.cis.2017.04.015
|
6 |
|
|
SHI Baoqiang, ZHANG Hanmin, YANG Fenglin,et al. Prospect of artificial neural network in the study of membrane fouling in membrane bioreactor[J]. Industrial Water Treatment, 2006, 26(12):14-17. doi: 10.3969/j.issn.1005-829X.2006.12.004
|
7 |
SCHMITT F, DO K U. Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies:Bottlenecks and possibilities[J]. Environmental Science and Pollution Research, 2017, 24(29):22885-22913. doi: 10.1007/s11356-017-0046-7
|
8 |
BAGHERI M, AKBARI A, MIRBAGHERI S A. Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques:A critical review[J]. Process Safety and Environmental Protection, 2019, 123:229-252. doi: 10.1016/j.psep.2019.01.013
|
9 |
|
|
HAN Yongping, XIAO Yan, SONG Lei,et al. Progress of MBR membrane fouling formation and its influence factors[J]. Membrane Science and Technology, 2013, 33(1):102-110. doi: 10.3969/j.issn.1007-8924.2013.01.020
|
10 |
MENG Fangang, CHAE S R, DREWS A,et al. Recent advances in membrane bioreactors(MBRs):Membrane fouling and membrane material[J]. Water Research, 2009, 43(6):1489-1512. doi: 10.1016/j.watres.2008.12.044
|
11 |
|
|
MU Situ, FAN Huiju, HAN Bingjun,et al. Review of membrane fouling stages and mathematical models for hollow fiber membrane[J]. Membrane Science and Technology, 2018, 38(1):114-121. doi: 10.1016/j.memsci.2018.10.023
|
12 |
TANSEL B, BAO W Y, TANSEL I N. Characterization of fouling kinetics in ultrafiltration systems by resistances in series model[J]. Desalination, 2000, 129(1):7-14. doi: 10.1016/s0011-9164(00)00046-1
|
13 |
CHANG S, FANE A G. The effect of fibre diameter on filtration and flux distribution—Relevance to submerged hollow fibre modules[J]. Journal of Membrane Science, 2001, 184(2):221-231. doi: 10.1016/s0376-7388(00)00626-8
|
14 |
YOON S H, KIM H S, YEOM I T. Optimization model of submerged hollow fiber membrane modules[J]. Journal of Membrane Science, 2004, 234(1/2):147-156. doi: 10.1016/j.memsci.2004.01.018
|
15 |
HERMIA J. Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids[J]. Transactions of the Institution of Chemical Engineers,1982,60:183-187.
|
16 |
ZUTHI M F R, GUO Wenshan, NGO H H,et al. New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor[J]. Bioresource Technology, 2017, 238:86-94. doi: 10.1016/j.biortech.2017.04.006
|
17 |
SATO T, ISHII Y. Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment[J]. Water Science and Technology, 1991, 23(7/8/9):1601-1608. doi: 10.2166/wst.1991.0614
|
18 |
MENG Fangang, ZHANG Hanmin, YANG Fenglin,et al. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors[J]. Separation and Purification Technology, 2006, 51(1):95-103. doi: 10.1016/j.seppur.2006.01.002
|
19 |
MENG Fangang, SO-RYONG C, ANJA D,et al. Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material[J]. Water Research, 2009, 43(6):1489-1512. doi: 10.1016/j.watres.2008.12.044
|
20 |
JEONG Y, KIM Y, JIN Yongxun,et al. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater[J]. Separation and Purification Technology, 2018, 199:182-188. doi: 10.1016/j.seppur.2018.01.057
|
21 |
MAMAH S C, GOH P S, ISMAIL A F,et al. Recent development in modification of polysulfone membrane for water treatment application[J]. Journal of Water Process Engineering, 2021, 40:101835. doi: 10.1016/j.jwpe.2020.101835
|
22 |
WANG Kanming, MARTIN-GARCIA N, SOARES A,et al. Comparison of fouling between aerobic and anaerobic MBR treating municipal wastewater[J]. H2Open Journal, 2018, 1(2):131-159. doi: 10.2166/h2oj.2018.109
|
23 |
HUANG Zhi, ONG S L, NG H Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment:Effect of HRT and SRT on treatment performance and membrane fouling[J]. Water Research, 2011, 45(2):705-713. doi: 10.1016/j.watres.2010.08.035
|
24 |
FALLAH N, BONAKDARPOUR B, NASERNEJAD B,et al. Long-term operation of submerged membrane bioreactor(MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound(VOC):Effect of hydraulic retention time(HRT)[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):718-724. doi: 10.1016/j.jhazmat.2010.02.001
|
25 |
AN Yingyu, WU Bing, WONG F S,et al. Post-treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process:Fouling control by intermittent permeation and air sparging[J]. Water and Environment Journal, 2010, 24(1):32-38. doi: 10.1111/j.1747-6593.2008.00152.x
|
26 |
YOON S H. Membrane bioreactor processes[M]. New York:CRC Press,2015:201-204.
|
27 |
王朝朝,杨磊,闫立娜,等. 中空纤维膜生物反应器污泥特性与可持续通量评估[J]. 中国给水排水,2018,34(11):88-92.
|
|
WANG Zhaozhao, YANG Lei, YAN Lina,et al. Assessment of sludge properties and sustainable flux in hollow fiber membrane bioreactor[J]. China Water & Wastewater,2018,34(11):88-92.
|
28 |
ROBLES Á, RUANO M V, CHARFI A,et al. A review on anaerobic membrane bioreactors(AnMBRs) focused on modelling and control aspects[J]. Bioresource Technology, 2018, 270:612-626. doi: 10.1016/j.biortech.2018.09.049
|
29 |
李航. 统计学习方法[M]. 北京:清华大学出版社,2012:37-39.
|
|
LI Hang. Statistical learning methods[M]. Beijing:Tsinghua University Press,2012:37-39.
|
30 |
|
|
|
31 |
李威威,李春青,聂敬云,等. 膜生物反应器膜污染的随机森林预测模型[J]. 计算机应用,2015,35(S1):135-137.
|
|
LI Weiwei, LI Chunqing, NIE Jingyun,et al. Prediction model for mambrane bio-reactor fouling based on random forest[J]. Journal of Computer Applications,2015,35(S1):135-137.
|
32 |
|
|
LIANG Kai. Application of Support Vector Machine based on simulated annealing algorithm in MBR membrane fouling[D]. Tianjin:Tianjin Polytechnic University, 2017. doi: 10.1109/sera.2017.7965730
|
33 |
WANG Zhan, ZHANG Ximing, ZHU Zhongya,et al. Influence of various operating conditions on cleaning efficiency in sequencing batch reactor(SBR) activated sludge process. Part V:Chemical cleaning model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63:52-60. doi: 10.1016/j.jtice.2016.03.022
|
34 |
CAI Yuhang, ZAIDI A A, SHI Yue,et al. Influence of salinity on the biological treatment of domestic ship sewage using an air-lift multilevel circulation membrane reactor[J]. Environmental Science and Pollution Research International, 2019, 26(36):37026-37036. doi: 10.1007/s11356-019-06813-4
|
35 |
PENDASHTEH A R, FAKHRU’L-RAZI A, CHAIBAKHSH N,et al. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network[J]. Journal of Hazardous Materials, 2011, 192(2):568-575. doi: 10.1016/j.jhazmat.2011.05.052
|
36 |
ALKMIM A R, DE ALMEIDA G M, DE CARVALHO D M,et al. Improving knowledge about permeability in membrane bioreactors through sensitivity analysis using artificial neural networks[J]. Environmental Technology, 2020, 41(19):2424-2438. doi: 10.1080/09593330.2019.1567609
|
37 |
HAZRATI H, MOGHADDAM A H, ROSTAMIZADEH M. The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor:Experimental and artificial neural network modeling[J]. Journal of Environmental Chemical Engineering, 2017, 5(3):3005-3013. doi: 10.1016/j.jece.2017.05.050
|
38 |
CHEW C M, AROUA M K, HUSSAIN M A. A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant[J]. Journal of Industrial and Engineering Chemistry, 2017, 45:145-155. doi: 10.1016/j.jiec.2016.09.017
|
39 |
SCHMITT F, BANU R, YEOM I T,et al. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater[J]. Biochemical Engineering Journal, 2018, 133:47-58. doi: 10.1016/j.bej.2018.02.001
|
40 |
ZHAO Zhitao, LOU Yang, CHEN Yifeng,et al. Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network(ANN)[J]. Bioresource Technology, 2019, 282:262-268. doi: 10.1016/j.biortech.2019.03.044
|
41 |
HAMEDI H, EHTESHAMI M, MIRBAGHERI S A,et al. New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors[J]. Chemical Engineering Research and Design, 2019, 144:334-353. doi: 10.1016/j.cherd.2019.02.003
|
42 |
蔡国帅. 改进的神经网络及CFD在MBR模拟仿真中的应用研究[D]. 天津:天津工业大学,2018.
|
|
CAI Guoshuai. Application of improved neural network and CFD in MBR simulation[D]. Tianjin:Tianjin Polytechnic University,2018.
|
43 |
HAN Honggui, ZHANG Huijuan, LIU Zheng,et al. Data-driven decision-making for wastewater treatment process[J]. Control Engineering Practice, 2020, 96:104305. doi: 10.1016/j.conengprac.2020.104305
|
44 |
郑树泉,王倩,武智霞. 工业智能技术与应用[M]. 上海:上海科学技术出版社,2019:250-251.
|
|
ZHEN Shuquan, WANG Qian, WU Zhixia. Industrial intelligence technology and applications[M]. Shanghai:Shanghai Science and Technology Press,2019:250-251.
|
45 |
MIRBAGHERI S A, BAGHERI M, BAGHERI Z,et al. Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm[J]. Process Safety and Environmental Protection, 2015, 96:111-124. doi: 10.1016/j.psep.2015.03.015
|
46 |
|
|
LIU Zhifeng, PAN Dan, WANG Jianhua,et al. Flux prediction of MBR based on PSO-BP neural network[J]. Journal of Beijing University of Technology, 2012, 38(1):126-131. doi: 10.11936/bjutxb2012010126
|
47 |
LU Jie, BEHBOOD V, HAO Peng,et al. Transfer learning using computational intelligence:A survey[J]. Knowledge-Based Systems, 2015, 80:14-23. doi: 10.1016/j.knosys.2015.01.010
|
48 |
SHI Shuai, XU Guoren. Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network[J]. Chemical Engineering Journal, 2018, 347:280-290. doi: 10.1016/j.cej.2018.04.087
|
49 |
CHOI Y J,OH H, LEE S,et al. Investigation of the filtration characteristics of pilot-scale hollow fiber submerged MF system using cake formation model and artificial neural networks model[J]. Desalination, 2012, 297:20-29. doi: 10.1016/j.desal.2012.04.013
|