| 1 | 赵维电,王新华,高宝玉. A/O-生物膜系统处理煤化工废水[J].环境工程学报,2012,6(10):3481-3484. | 
																													
																						|  |  ZHAO Weidian,  WANG Xinhua,  GAO Baoyu. Treatment of coal chemical industry wastewater by an A/O-biofilm pilot system[J].Chinese Journal of Environmental Engineering,2012,6(10):3481-3484. | 
																													
																						| 2 |  MENG Fangang, ZHANG Shaoqing ,OH Y,et al. Fouling in membrane bioreactors:An updated review[J]. Water Research ,2017 ,114 :151-180. doi:10.1016/j.watres.2017.02.006 | 
																													
																						| 3 |  BAGHERI M, MIRBAGHERI S A . Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology ,2018 ,258 :318-334. doi:10.1016/j.biortech.2018.03.026 | 
																													
																						| 4 |  YE Zhiping, YANG Jiaqian , ZHONG Na ,et al. Tackling environmental challenges in pollution controls using artificial intelligence:A review[J]. Science of the Total Environment ,2020 ,699 :134279. doi:10.1016/j.scitotenv.2019.134279 | 
																													
																						| 5 |  GHAEDI A M, VAFAEI A .Applications of artificial neural networks for adsorption removal of dyes from aqueous solution:A review[J].Advances in Colloid and Interface Science ,2017 ,245 :20-39. doi:10.1016/j.cis.2017.04.015 | 
																													
																						| 6 |  | 
																													
																						|  |  SHI Baoqiang, ZHANG Hanmin , YANG Fenglin ,et al. Prospect of artificial neural network in the study of membrane fouling in membrane bioreactor[J]. Industrial Water Treatment ,2006 ,26 (12):14-17. doi:10.3969/j.issn.1005-829X.2006.12.004 | 
																													
																						| 7 |  SCHMITT F, DO K U . Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies:Bottlenecks and possibilities[J]. Environmental Science and Pollution Research ,2017 ,24 (29):22885-22913. doi:10.1007/s11356-017-0046-7 | 
																													
																						| 8 |  BAGHERI M, AKBARI A , MIRBAGHERI S A . Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques:A critical review[J]. Process Safety and Environmental Protection ,2019 ,123 :229-252. doi:10.1016/j.psep.2019.01.013 | 
																													
																						| 9 |  | 
																													
																						|  |  HAN Yongping, XIAO Yan , SONG Lei ,et al. Progress of MBR membrane fouling formation and its influence factors[J]. Membrane Science and Technology ,2013 ,33 (1):102-110. doi:10.3969/j.issn.1007-8924.2013.01.020 | 
																													
																						| 10 |  MENG Fangang, CHAE S R , DREWS A ,et al. Recent advances in membrane bioreactors(MBRs):Membrane fouling and membrane material[J]. Water Research ,2009 ,43 (6):1489-1512. doi:10.1016/j.watres.2008.12.044 | 
																													
																						| 11 |  | 
																													
																						|  |  MU Situ, FAN Huiju , HAN Bingjun ,et al. Review of membrane fouling stages and mathematical models for hollow fiber membrane[J]. Membrane Science and Technology ,2018 ,38 (1):114-121. doi:10.1016/j.memsci.2018.10.023 | 
																													
																						| 12 |  TANSEL B, BAO W Y , TANSEL I N . Characterization of fouling kinetics in ultrafiltration systems by resistances in series model[J]. Desalination ,2000 ,129 (1):7-14. doi:10.1016/s0011-9164(00)00046-1 | 
																													
																						| 13 |  CHANG S, FANE A G . The effect of fibre diameter on filtration and flux distribution—Relevance to submerged hollow fibre modules[J]. Journal of Membrane Science ,2001 ,184 (2):221-231. doi:10.1016/s0376-7388(00)00626-8 | 
																													
																						| 14 |  YOON S H, KIM H S , YEOM I T . Optimization model of submerged hollow fiber membrane modules[J]. Journal of Membrane Science ,2004 ,234 (1/2):147-156. doi:10.1016/j.memsci.2004.01.018 | 
																													
																						| 15 |  HERMIA J. Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids[J]. Transactions of the Institution of Chemical Engineers,1982,60:183-187. | 
																													
																						| 16 |  ZUTHI M F R, GUO Wenshan , NGO H H ,et al. New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor[J]. Bioresource Technology ,2017 ,238 :86-94. doi:10.1016/j.biortech.2017.04.006 | 
																													
																						| 17 |  SATO T, ISHII Y . Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment[J]. Water Science and Technology ,1991 ,23 (7/8/9):1601-1608. doi:10.2166/wst.1991.0614 | 
																													
																						| 18 |  MENG Fangang, ZHANG Hanmin , YANG Fenglin ,et al. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors[J]. Separation and Purification Technology ,2006 ,51 (1):95-103. doi:10.1016/j.seppur.2006.01.002 | 
																													
																						| 19 |  MENG Fangang, SO-RYONG C , ANJA D ,et al. Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material[J]. Water Research ,2009 ,43 (6):1489-1512. doi:10.1016/j.watres.2008.12.044 | 
																													
																						| 20 |  JEONG Y, KIM Y , JIN Yongxun ,et al. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater[J]. Separation and Purification Technology ,2018 ,199 :182-188. doi:10.1016/j.seppur.2018.01.057 | 
																													
																						| 21 |  MAMAH S C, GOH P S , ISMAIL A F ,et al. Recent development in modification of polysulfone membrane for water treatment application[J]. Journal of Water Process Engineering ,2021 ,40 :101835. doi:10.1016/j.jwpe.2020.101835 | 
																													
																						| 22 |  WANG Kanming, MARTIN-GARCIA N , SOARES A ,et al. Comparison of fouling between aerobic and anaerobic MBR treating municipal wastewater[J]. H2Open Journal ,2018 ,1 (2):131-159. doi:10.2166/h2oj.2018.109 | 
																													
																						| 23 |  HUANG Zhi, ONG S L , NG H Y . Submerged anaerobic membrane bioreactor for low-strength wastewater treatment:Effect of HRT and SRT on treatment performance and membrane fouling[J]. Water Research ,2011 ,45 (2):705-713. doi:10.1016/j.watres.2010.08.035 | 
																													
																						| 24 |  FALLAH N, BONAKDARPOUR B , NASERNEJAD B ,et al. Long-term operation of submerged membrane bioreactor(MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound(VOC):Effect of hydraulic retention time(HRT)[J]. Journal of Hazardous Materials ,2010 ,178 (1/2/3):718-724. doi:10.1016/j.jhazmat.2010.02.001 | 
																													
																						| 25 |  AN Yingyu, WU Bing , WONG F S ,et al. Post-treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process:Fouling control by intermittent permeation and air sparging[J]. Water and Environment Journal ,2010 ,24 (1):32-38. doi:10.1111/j.1747-6593.2008.00152.x | 
																													
																						| 26 |  YOON S H. Membrane bioreactor processes[M]. New York:CRC Press,2015:201-204. | 
																													
																						| 27 | 王朝朝,杨磊,闫立娜,等. 中空纤维膜生物反应器污泥特性与可持续通量评估[J]. 中国给水排水,2018,34(11):88-92. | 
																													
																						|  |  WANG Zhaozhao,  YANG Lei,  YAN Lina,et al. Assessment of sludge properties and sustainable flux in hollow fiber membrane bioreactor[J]. China Water & Wastewater,2018,34(11):88-92. | 
																													
																						| 28 |  ROBLES Á, RUANO M V , CHARFI A ,et al. A review on anaerobic membrane bioreactors(AnMBRs) focused on modelling and control aspects[J]. Bioresource Technology ,2018 ,270 :612-626. doi:10.1016/j.biortech.2018.09.049 | 
																													
																						| 29 | 李航. 统计学习方法[M]. 北京:清华大学出版社,2012:37-39. | 
																													
																						|  |  LI Hang. Statistical learning methods[M]. Beijing:Tsinghua University Press,2012:37-39. | 
																													
																						| 30 |  | 
																													
																						|  |  | 
																													
																						| 31 | 李威威,李春青,聂敬云,等. 膜生物反应器膜污染的随机森林预测模型[J]. 计算机应用,2015,35(S1):135-137. | 
																													
																						|  |  LI Weiwei,  LI Chunqing,  NIE Jingyun,et al. Prediction model for mambrane bio-reactor fouling based on random forest[J]. Journal of Computer Applications,2015,35(S1):135-137. | 
																													
																						| 32 |  | 
																													
																						|  |  LIANG Kai. Application of Support Vector Machine based on simulated annealing algorithm in MBR membrane fouling[D]. Tianjin:Tianjin Polytechnic University,2017 . doi:10.1109/sera.2017.7965730 | 
																													
																						| 33 |  WANG Zhan, ZHANG Ximing , ZHU Zhongya ,et al. Influence of various operating conditions on cleaning efficiency in sequencing batch reactor(SBR) activated sludge process. Part V:Chemical cleaning model[J]. Journal of the Taiwan Institute of Chemical Engineers ,2016 ,63 :52-60. doi:10.1016/j.jtice.2016.03.022 | 
																													
																						| 34 |  CAI Yuhang, ZAIDI A A , SHI Yue ,et al. Influence of salinity on the biological treatment of domestic ship sewage using an air-lift multilevel circulation membrane reactor[J]. Environmental Science and Pollution Research International ,2019 ,26 (36):37026-37036. doi:10.1007/s11356-019-06813-4 | 
																													
																						| 35 |  PENDASHTEH A R, FAKHRU’L-RAZI A , CHAIBAKHSH N ,et al. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network[J]. Journal of Hazardous Materials ,2011 ,192 (2):568-575. doi:10.1016/j.jhazmat.2011.05.052 | 
																													
																						| 36 |  ALKMIM A R, DE ALMEIDA G M , DE CARVALHO D M ,et al. Improving knowledge about permeability in membrane bioreactors through sensitivity analysis using artificial neural networks[J]. Environmental Technology ,2020 ,41 (19):2424-2438. doi:10.1080/09593330.2019.1567609 | 
																													
																						| 37 |  HAZRATI H, MOGHADDAM A H , ROSTAMIZADEH M . The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor:Experimental and artificial neural network modeling[J]. Journal of Environmental Chemical Engineering ,2017 ,5 (3):3005-3013. doi:10.1016/j.jece.2017.05.050 | 
																													
																						| 38 |  CHEW C M, AROUA M K , HUSSAIN M A . A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant[J]. Journal of Industrial and Engineering Chemistry ,2017 ,45 :145-155. doi:10.1016/j.jiec.2016.09.017 | 
																													
																						| 39 |  SCHMITT F, BANU R , YEOM I T ,et al. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater[J]. Biochemical Engineering Journal ,2018 ,133 :47-58. doi:10.1016/j.bej.2018.02.001 | 
																													
																						| 40 |  ZHAO Zhitao, LOU Yang , CHEN Yifeng ,et al. Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network(ANN)[J]. Bioresource Technology ,2019 ,282 :262-268. doi:10.1016/j.biortech.2019.03.044 | 
																													
																						| 41 |  HAMEDI H, EHTESHAMI M , MIRBAGHERI S A ,et al. New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors[J]. Chemical Engineering Research and Design ,2019 ,144 :334-353. doi:10.1016/j.cherd.2019.02.003 | 
																													
																						| 42 | 蔡国帅. 改进的神经网络及CFD在MBR模拟仿真中的应用研究[D]. 天津:天津工业大学,2018. | 
																													
																						|  |  CAI Guoshuai. Application of improved neural network and CFD in MBR simulation[D]. Tianjin:Tianjin Polytechnic University,2018. | 
																													
																						| 43 |  HAN Honggui, ZHANG Huijuan , LIU Zheng ,et al. Data-driven decision-making for wastewater treatment process[J]. Control Engineering Practice ,2020 ,96 :104305. doi:10.1016/j.conengprac.2020.104305 | 
																													
																						| 44 | 郑树泉,王倩,武智霞. 工业智能技术与应用[M]. 上海:上海科学技术出版社,2019:250-251. | 
																													
																						|  |  ZHEN Shuquan,  WANG Qian,  WU Zhixia. Industrial intelligence technology and applications[M]. Shanghai:Shanghai Science and Technology Press,2019:250-251. | 
																													
																						| 45 |  MIRBAGHERI S A, BAGHERI M , BAGHERI Z ,et al. Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm[J]. Process Safety and Environmental Protection ,2015 ,96 :111-124. doi:10.1016/j.psep.2015.03.015 | 
																													
																						| 46 |  | 
																													
																						|  |  LIU Zhifeng, PAN Dan , WANG Jianhua ,et al. Flux prediction of MBR based on PSO-BP neural network[J]. Journal of Beijing University of Technology ,2012 ,38 (1):126-131. doi:10.11936/bjutxb2012010126 | 
																													
																						| 47 |  LU Jie, BEHBOOD V , HAO Peng ,et al. Transfer learning using computational intelligence:A survey[J]. Knowledge-Based Systems ,2015 ,80 :14-23. doi:10.1016/j.knosys.2015.01.010 | 
																													
																						| 48 |  SHI Shuai, XU Guoren . Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network[J]. Chemical Engineering Journal ,2018 ,347 :280-290. doi:10.1016/j.cej.2018.04.087 | 
																													
																						| 49 |  CHOI Y J,OH H, LEE S ,et al. Investigation of the filtration characteristics of pilot-scale hollow fiber submerged MF system using cake formation model and artificial neural networks model[J]. Desalination ,2012 ,297 :20-29. doi:10.1016/j.desal.2012.04.013 |