1 |
MENG Fangang, ZHANG Shaoqing,OH Y,et al. Fouling in membrane bioreactors:An updated review[J]. Water Research, 2017, 114:151-180. doi: 10.1016/j.watres.2017.02.006
|
2 |
YANG J, MONNOT M, ELJADDI T,et al. Ultrafiltration as tertiary treatment for municipal wastewater reuse[J]. Separation and Purification Technology, 2021, 272:118921. doi: 10.1016/j.seppur.2021.118921
|
3 |
|
|
HU Hongying, WU Qianyuan, WU Guangxue,et al. Evaluation of water feature and its application in the wastewater reclamation[J]. Research of Environmental Sciences, 2019, 32(5):725-733. doi: 10.13198/j.issn.1001-6929.2019.04.07
|
4 |
佚名. 突发环境事件应急管理办法[J]. 化工安全与环境, 2015(17):3.
|
5 |
|
|
GUO Jin, SHENG Feng, MA Mintao,et al. Effluent organic matter(EfOM) in biological treatment sewage effluent:The status of characterization and removal[J]. Journal of Beijing University of Technology, 2011, 37(1):131-138. doi: 10.11936/bjutxb2011010131
|
6 |
LEENHEER J A, CROUÉ J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1):18A-26A. doi: 10.1021/es032333c
|
7 |
FAN Linhua, NGUYEN T, RODDICK F A,et al. Low-pressure membrane filtration of secondary effluent in water reuse:Pre-treatment for fouling reduction[J]. Journal of Membrane Science, 2008, 320(1/2):135-142. doi: 10.1016/j.memsci.2008.03.058
|
8 |
ZHENG Xing, ERNST M, JEKEL M. Identification and quantification of major organic foulants in treated domestic wastewater affecting filterability in dead-end ultrafiltration[J]. Water Research, 2009, 43(1):238-244. doi: 10.1016/j.watres.2008.10.011
|
9 |
HENDERSON R K, SUBHI N, ANTONY A,et al. Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques[J]. Journal of Membrane Science, 2011, 382(1/2):50-59. doi: 10.1016/j.memsci.2011.07.041
|
10 |
JEONG K, LEE D S, KIM D G,et al. Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling[J]. Journal of Environmental Sciences, 2014, 26(6):1325-1331. doi: 10.1016/s1001-0742(13)60607-5
|
11 |
JARUSUTTHIRAK C,AMY G, CROUÉ J P. Fouling characteristics of wastewater effluent organic matter(EfOM) isolates on NF and UF membranes[J]. Desalination, 2002, 145(1/2/3):247-255. doi: 10.1016/s0011-9164(02)00419-8
|
12 |
ZHENG Xing, KHAN M T, CROUÉ J P. Contribution of effluent organic matter(EfOM) to ultrafiltration(UF) membrane fouling:Isolation,characterization,and fouling effect of EfOM fractions[J]. Water Research, 2014, 65:414-424. doi: 10.1016/j.watres.2014.07.039
|
13 |
XIAO Kang, SHEN Yuexiao, LIANG Shuai,et al. A systematic analysis of fouling evolution and irreversibility behaviors of MBR supernatant hydrophilic/hydrophobic fractions during microfiltration[J]. Journal of Membrane Science, 2014, 467:206-216. doi: 10.1016/j.memsci.2014.05.030
|
14 |
MIAO Rui, WANG Lei, Yongtao LÜ,et al. Identifying polyvinylidene fluoride ultrafiltration membrane fouling behavior of different effluent organic matter fractions using colloidal probes[J]. Water Research, 2014, 55:313-322. doi: 10.1016/j.watres.2014.02.039
|
15 |
HENDERSON R K, BAKER A, MURPHY K R,et al. Fluorescence as a potential monitoring tool for recycled water systems:A review[J]. Water Research, 2009, 43(4):863-881. doi: 10.1016/j.watres.2008.11.027
|
16 |
YU Huarong, QU Fangshu, CHANG Haiqing,et al. Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation-emission matrix coupled with parallel factor analysis[J]. International Biodeterioration & Biodegradation, 2015, 102:56-63. doi: 10.1016/j.ibiod.2015.01.011
|
17 |
FILLOUX E, GERNJAK W, GALLARD H,et al. Investigating the relative contribution of colloidal and soluble fractions of secondary effluent organic matter to the irreversible fouling of MF and UF hollow fibre membranes[J]. Separation and Purification Technology, 2016, 170:109-115. doi: 10.1016/j.seppur.2016.06.034
|
18 |
LY Q V, NGHIEM L D, CHO J,et al. Insights into the roles of recently developed coagulants as pretreatment to remove effluent organic matter for membrane fouling mitigation[J]. Journal of Membrane Science, 2018, 564:643-652. doi: 10.1016/j.memsci.2018.07.081
|
19 |
KUNACHEVA C, STUCKEY D C. Analytical methods for soluble microbial products(SMP) and extracellular polymers(ECP) in wastewater treatment systems:A review[J]. Water Research, 2014, 61:1-18. doi: 10.1016/j.watres.2014.04.044
|
20 |
NI Bingjie, YU Hanqing. Microbial products of activated sludge in biological wastewater treatment systems:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(2):187-223. doi: 10.1080/10643389.2010.507696
|
21 |
AQUINO S F, GLORIA R M, SILVA S Q,et al. Quantification of the inert chemical oxygen demand of raw wastewater and evaluation of soluble microbial product production in demo-scale upflow anaerobic sludge blanket reactors under different operational conditions[J]. Water Environment Research, 2009, 81(6):608-616. doi: 10.2175/106143008x370386
|
22 |
LIU Tong, WANG Zi, WU Linjie,et al. Acute impact of Hg 2+,Cu 2+,and Ag + on the formation of biopolymers and nitrogenous soluble microbiological products in activated sludge for wastewater treatment[J]. Environmental Pollution, 2020, 267:115388. doi: 10.1016/j.envpol.2020.115388
|
23 |
TRINH T, BRANCH A, HAMBLY A C,et al. Hazardous events in membrane bioreactors-Part 1:Impacts on key operational and bulk water quality parameters[J]. Journal of Membrane Science, 2016, 497:494-503. doi: 10.1016/j.memsci.2015.03.003
|
24 |
MAQBOOL T, CHO J,HUR J. Changes in spectroscopic signatures in soluble microbial products of activated sludge under different osmotic stress conditions[J]. Bioresource Technology, 2018, 255:29-38. doi: 10.1016/j.biortech.2018.01.113
|
25 |
ZHENG Xing, LIU Tong, GUO Menghan,et al. Impact of heavy metals on the formation and properties of solvable microbiological products released from activated sludge in biological wastewater treatment[J]. Water Research, 2020, 179:115895. doi: 10.1016/j.watres.2020.115895
|
26 |
LEWIS D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning?[J]. Nature, 2021, 590(7844):26-28. doi: 10.1038/d41586-021-00251-4
|
27 |
ZHOU Zhongbo, HE Xiang, ZHOU Minghao,et al .Chemically induced alterations in the characteristics of fouling-causing bio-macromolecules-Implications for the chemical cleaning of fouled membranes[J]. Water Research, 2017, 108:115-123. doi: 10.1016/j.watres.2016.10.065
|
28 |
LI Xiaoliang, WU Linjie, LU Sijia,et al. Treatment of cooling tower blowdown water by using adsorption-electrocatalytic oxidation:Technical performance,toxicity assessment and economic evaluation[J]. Separation and Purification Technology, 2020, 252:117484. doi: 10.1016/j.seppur.2020.117484
|
29 |
XU Zhenzhen, Yue BEN, CHEN Zhonglin,et al. Application and microbial ecology of psychrotrophs in domestic wastewater treatment at low temperature[J]. Chemosphere, 2018, 191:946-953. doi: 10.1016/j.chemosphere.2017.10.121
|
30 |
TAO Chen, PARKER W, BÉRUBÉ P. Characterization and modelling of soluble microbial products in activated sludge systems treating municipal wastewater with special emphasis on temperature effect[J]. Science of the Total Environment, 2021, 779:146471. doi: 10.1016/j.scitotenv.2021.146471
|
31 |
KRZEMINSKI P, IGLESIAS-OBELLEIRO A, MADEBO G,et al .Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment[J]. Journal of Membrane Science, 2012, 423/424:348-361. doi: 10.1016/j.memsci.2012.08.032
|
32 |
VAN DEN BRINK P, SATPRADIT O A, VAN BENTEM A,et al .Effect of temperature shocks on membrane fouling in membrane bioreactors[J]. Water Research, 2011, 45(15):4491-4500. doi: 10.1016/j.watres.2011.05.046
|
33 |
MADONI P, DAVOLI D, GORBI G,et al .Toxic effect of heavy metals on the activated sludge protozoan community[J]. Water Research, 1996, 30(1):135-141. doi: 10.1016/0043-1354(95)00124-4
|
34 |
BHAT S A, CUI Guangyu, LI Wenjiao,et al. Effect of heavy metals on the performance and bacterial profiles of activated sludge in a semi-continuous reactor[J]. Chemosphere, 2020, 241:125035. doi: 10.1016/j.chemosphere.2019.125035
|
35 |
WANG Dongqi, LI X X, YANG Z J,et al. The effects of mercury shock on the performance and microorganisms in biological wastewater treatment process[J]. IOP Conference Series:Earth and Environmental Science, 2019, 344(1):012152. doi: 10.1088/1755-1315/344/1/012152
|
36 |
CHEN Genqiang, WU Yinhu, WANG Yunhong,et al. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation:A review[J]. Journal of Hazardous Materials, 2021, 413:125283. doi: 10.1016/j.jhazmat.2021.125283
|
37 |
|
|
LUO Liwei, LUO Huijia, CUI Yong,et al. Effect of methylisothiazolone on the bacterial growth,secretion and community structure in the effluent of MBR[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2467-2474. doi: 10.13671/j.hjkxxb.2019.0147
|
38 |
ZHANG Haiya, TIAN Yimei, KANG Mengxin,et al. Effects of chlorination/chlorine dioxide disinfection on biofilm bacterial community and corrosion process in a reclaimed water distribution system[J]. Chemosphere, 2019, 215:62-73. doi: 10.1016/j.chemosphere.2018.09.181
|
39 |
REN Nanqi, KANG Han, WANG Xiuheng,et al. Short-term effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system[J]. Frontiers of Environmental Science & Engineering in China, 2011, 5(2):277-282. doi: 10.1007/s11783-010-0226-x
|
40 |
AHMED W, DELATOLLA R. Microbial response of nitrifying biofilms to cold-shock[J]. Environmental Science:Water Research & Technology, 2020, 6(12):3428-3439. doi: 10.1039/d0ew00614a
|
41 |
COURAS C S, LOUROS V L, GRILO A M,et al. Effects of operational shocks on key microbial populations for biogas production in UASB(Upflow Anaerobic Sludge Blanket) reactors[J]. Energy, 2014, 73:866-874. doi: 10.1016/j.energy.2014.06.098
|