1 |
DUBANSKY B, WHITEHEAD A, MILLER J T,et al. Multitissue molecular,genomic,and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis)[J]. Environmental Science & Technology,2013,47(10):5074-5082. doi:10.1021/es400458p
|
2 |
SCHROPE M. Oil spill:Deep wounds[J]. Nature,2011,472(7342):152-154. doi:10.1038/472152a
|
3 |
缪欣怡,王广智,王东东,等. 面向海上油田采油废水的抗污染膜制备的研究进展[J]. 工业水处理,2022,42(3):16-22.
URL
|
|
MIAO Xinyi, WANG Guangzhi, WANG Dongdong,et al. Preparation of anti-fouling membrane for offshore oilfield production wastewater:A review[J]. Industrial Water Treatment,2022,42(3):16-22.
URL
|
4 |
XUE Zhongxin, CAO Yingze, LIU Na,et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A,2014,2(8):2445-2460. doi:10.1039/c3ta13397d
|
5 |
LIN Zizeng, WANG Weijie, HUANG Rongpin. Study of oily sludge treatment by centrifugation[J]. Desalination and Water Treatment,2017,68:99-106. doi:10.5004/dwt.2017.20192
|
6 |
HANAFY M, NABIH H I. Treatment of oily wastewater using dissolved air flotation technique[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2007,29(2):143-159. doi:10.1080/009083190948711
|
7 |
孔露露,周启星. 生物炭输入土壤对其石油烃微生物降解力的影响[J]. 环境科学学报,2016,36(11):4199-4207. doi:10.13671/j.hjkxxb.2016.0040
|
|
KONG Lulu, ZHOU Qixing. Effects of biochar input on biodegradation of petroleum hydrocarbons in soil[J]. Acta Scientiae Circumstantiae,2016,36(11):4199-4207. doi:10.13671/j.hjkxxb.2016.0040
|
8 |
齐鸣,秦连松,方艺民,等. 膜组合分段分盐工艺在深度处理制药废水中的应用[J]. 工业水处理,2022,42(3):160-167.
URL
|
|
QI Ming, QIN Liansong, FANG Yimin,et al. Application of membrane combined sectional salt separation process in the treatment of pharmaceutical wastewater[J]. Industrial Water Treatment,2022,42(3):160-167.
URL
|
9 |
HU Yue, ZHU Yanji, WANG Huaiyuan,et al. Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation[J]. Chemical Engineering Journal,2017,322:157-166. doi:10.1016/j.cej.2017.04.034
|
10 |
LI Jian, XU Changcheng, ZHANG Yan,et al. Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation[J]. Journal of Materials Chemistry A,2016,4(40):15546-15553. doi:10.1039/c6ta07535e
|
11 |
ZHANG Ming, WANG Shuliang, WANG Chengyu,et al. A facile method to fabricate superhydrophobic cotton fabrics[J]. Applied Surface Science,2012,261:561-566. doi:10.1016/j.apsusc.2012.08.055
|
12 |
PILTAN S, SEYFI J, HEJAZI I,et al. Superhydrophobic filter paper via an improved phase separation process for oil/water separation:Study on surface morphology,composition and wettability[J]. Cellulose,2016,23(6):3913-3924. doi:10.1007/s10570-016-1059-y
|
13 |
WANG Yingke, WANG Bo, WANG Jinhan,et al. Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation[J]. Journal of Hazardous Materials,2018,344:849-856. doi:10.1016/j.jhazmat.2017.11.040
|
14 |
TANG Wenjing, SUN De, LIU Shaohua,et al. One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation[J]. Separation and Purification Technology,2020,236:116293. doi:10.1016/j.seppur.2019.116293
|
15 |
ZANG Xiaohuan, CHANG Qingyun, PANG Yachao,et al. Solid-phase microextraction of eleven organochlorine pesticides from fruit and vegetable samples by a coated fiber with boron nitride modified multiwalled carbon nanotubes[J]. Food Chemistry,2021,359:129984. doi:10.1016/j.foodchem.2021.129984
|
16 |
ZHANG Xin, LIU Wenxiao, ZHOU Yiwen,et al. Single-atom nickel anchored on surface of molybdenum disulfide for efficient hydrogen evolution[J]. Journal of Electroanalytical Chemistry,2021,894:115359. doi:10.1016/j.jelechem.2021.115359
|
17 |
TAKAHASHI A, TAKEICHI Y, KIMURA M,et al. Low friction mechanism survey of tungsten disulfide by using XRD,XPS,and XAFS[J]. Tribology Letters,2021,69(3):84. doi:10.1007/s11249-021-01428-8
|
18 |
ZHANG Yuming, CAO Junming, YUAN Zeyu,et al. Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,599:109-118. doi:10.1016/j.jcis.2021.04.089
|
19 |
ZHANG Xu, ZHAO Xudong, WU Dihua,et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons[J]. Nanoscale,2015,7(38):16020-16025. doi:10.1039/c5nr04717j
|
20 |
XU Xiaodan, ZHANG Yelong, SUN Hongyang,et al. Progress and perspective:MXene and MXene-based nanomaterials for high-performance energy storage devices[J]. Advanced Electronic Materials,2021,7(7):2000967. doi:10.1002/aelm.202000967
|
21 |
NAGUIB M, KURTOGLU M, PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials (Deerfield Beach,Fla.),2011,23(37):4248-4253. doi:10.1002/adma.201102306
|
22 |
GHIDIU M, LUKATSKAYA M R, ZHAO Mengqiang,et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi:10.1038/nature13970
|
23 |
LI Gengnan, TAN Li, ZHANG Yumeng,et al. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(36):9000-9006. doi:10.1021/acs.langmuir.7b01339
|
24 |
XIE Xiaohong, XUE Yun, LI Li,et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale,2014,6(19):11035-11040. doi:10.1039/c4nr02080d
|
25 |
HALIM J, LUKATSKAYA M R, COOK K M,et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials:A Publication of the American Chemical Society,2014,26(7):2374-2381. doi:10.1021/cm500641a
|
26 |
URBANKOWSKI P, ANASORI B, MAKARYAN T,et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale,2016,8(22):11385-11391. doi:10.1039/c6nr02253g
|
27 |
LI Mian, LU Jun, LUO Kan,et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society,2019,141(11):4730-4737. doi:10.1021/jacs.9b00574
|
28 |
KAMYSBAYEV V, FILATOV A S, HU Huicheng,et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science,2020,369(6506):979-983. doi:10.1126/science.aba8311
|
29 |
SEYEDIN S, ZHANG Jizhen, USMAN K A S,et al. Facile solution processing of stable MXene dispersions towards conductive composite fibers[J]. Global Challenges(Hoboken,NJ),2019,3(10):1900037. doi:10.1002/gch2.201900037
|
30 |
HAN Bing, HUANG Yuanlin, LI Ruopeng,et al. Bio-inspired networks for optoelectronic applications[J]. Nature Communications,2014,5(1):1-7. doi:10.1038/ncomms6674
|
31 |
LIU Mingjie, WANG Shutao, WEI Zhixiang,et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials,2009,21(6):665-669. doi:10.1002/adma.200801782
|
32 |
WEI Yibin, QI Hong, GONG Xiao,et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces,2018,5(23):1800576. doi:10.1002/admi.201800576
|
33 |
刘永明,施建宇,鹿芹芹,等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报,2013,27(11):123-129. doi:10.3969/j.issn.1005-023X.2013.11.023
|
34 |
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994. doi:10.1021/ie50320a024
|
35 |
CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi:10.1039/tf9444000546
|
36 |
TUTEJA A, CHOI W, MABRY J M,et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(47):18200-18205. doi:10.1073/pnas.0804872105
|
37 |
KIM B S, HARRIOTT P. Critical entry pressure for liquids in hydrophobic membranes[J]. Journal of Colloid and Interface Science,1987,115(1):1-8. doi:10.1016/0021-9797(87)90002-6
|
38 |
MOSADEGH-SEDGHI S, RODRIGUE D, BRISSON J,et al. Wetting phenomenon in membrane contactors-Causes and prevention[J]. Journal of Membrane Science,2014,452:332-353. doi:10.1016/j.memsci.2013.09.055
|
39 |
HAN Xutong, GUO Zhiguang. Graphene and its derivative composite materials with special wettability:Potential application in oil-water separation[J]. Carbon,2021,172:647-681. doi:10.1016/j.carbon.2020.10.060
|
40 |
ZHOU Hang, WANG Fuqiang, WANG Yuwei,et al. Study on contact angles and surface energy of MXene films[J]. RSC Advances,2021,11(10):5512-5520. doi:10.1039/d0ra09125a
|
41 |
BAO Weizhai, TANG Xiao, GUO Xin,et al. Porous cryo-dried MXene for efficient capacitive deionization[J]. Joule,2018,2(4):778-787. doi:10.1016/j.joule.2018.02.018
|
42 |
ZHOU Hang, WANG Yuwei, WANG Fuqiang,et al. Water permeability in MXene membranes:Process matters[J]. Chinese Chemical Letters,2020,31(6):1665-1669. doi:10.1016/j.cclet.2019.10.037
|
43 |
LIN Qingquan, LIU Yongcong, ZENG Guangyong,et al. Bionics inspired modified two-dimensional MXene composite membrane for high-throughput dye separation[J]. Journal of Environmental Chemical Engineering,2021,9(4):105711. doi:10.1016/j.jece.2021.105711
|
44 |
张皓,刘海成,陈国栋,等. 微塑料吸附水环境中重金属的研究进展[J]. 工业水处理,2022,43(4):36-44.
|
|
ZHANG Hao, LIU Haicheng, CHEN Guodong,et al. Recent advances on adsorption of heavy metals in water environment by microplastics[J]. Industrial Water Treatment,2022,43(4):36-44.
|
45 |
LIU Yue, ZHANG Fengrui, ZHU Wenxia,et al. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal[J]. Carbon,2020,160:88-97. doi:10.1016/j.carbon.2020.01.002
|
46 |
WANG Ningning, WANG Hao, WANG Yuying,et al. Robust,lightweight,hydrophobic,and fire-retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Applied Materials & Interfaces,2019,11(43):40512-40523. doi:10.1021/acsami.9b14265
|
47 |
XUE Jinwei, ZHU Lei, ZHU Xu,et al. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption[J]. Separation and Purification Technology,2021,259:118106. doi:10.1016/j.seppur.2020.118106
|
48 |
WANG Mengke, ZHU Jun, ZI You,et al. 3D MXene sponge:Facile synthesis,excellent hydrophobicity,and high photothermal efficiency for waste oil collection and purification[J]. ACS Applied Materials & Interfaces,2021,13(39):47302-47312. doi:10.1021/acsami.1c15064
|
49 |
CAI Chenyang, WEI Zechang, HUANG Yangze,et al. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil[J]. Chemical Engineering Journal,2021,421:127772. doi:10.1016/j.cej.2020.127772
|
50 |
WANG Peilin, MA Chang, YUAN Qi,et al. Novel Ti3C2T x MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect[J]. Journal of Colloid and Interface Science,2022,606:971-982. doi:10.1016/j.jcis.2021.08.092
|
51 |
LI Zhongkun, LIU Yanchang, LI Libo,et al. Ultra-thin titanium carbide(MXene) sheet membranes for high-efficient oil/water emulsions separation[J]. Journal of Membrane Science,2019,592:117361. doi:10.1016/j.memsci.2019.117361
|
52 |
ZHANG Haijun, WANG Zhanhui, SHEN Yongqian,et al. Ultrathin 2D Ti3C2T x MXene membrane for effective separation of oil-in-water emulsions in acidic,alkaline,and salty environment[J]. Journal of Colloid and Interface Science,2020,561:861-869. doi:10.1016/j.jcis.2019.11.069
|
53 |
SATHTHASIVAM J, WANG Kui, YIMING W,et al. A flexible Ti3C2T x (MXene)/paper membrane for efficient oil/water separation[J]. RSC Advances,2019,9(29):16296-16304. doi:10.1039/c9ra02129a
|
54 |
LONG Xuan, ZHAO Guoqing, HU Jun,et al. Cracked-earth-like titanium carbide MXene membranes with abundant hydroxyl groups for oil-in-water emulsion separation[J]. Journal of Colloid and Interface Science,2022,607:378-388. doi:10.1016/j.jcis.2021.08.175
|
55 |
HE Shuangjiang, ZHAN Yingqing, HU Jiaxin,et al. Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation[J]. Composites Part B:Engineering,2020,197:108188. doi:10.1016/j.compositesb.2020.108188
|
56 |
FENG Xiaofang, YU Zongxue, LONG Runxuan,et al. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal[J]. Separation and Purification Technology,2020,247:116945. doi:10.1016/j.seppur.2020.116945
|
57 |
ZENG Guangyong, WEI Ke, ZHANG Haiyan,et al. Ultra-high oil-water separation membrane based on two-dimensional MXene(Ti3C2T x ) by co-incorporation of halloysite nanotubes and polydopamine[J]. Applied Clay Science,2021,211:106177. doi:10.1016/j.clay.2021.106177
|
58 |
LIN Qingquan, ZENG Guangyong, YAN Guilong,et al. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment:Oil/water separation and dyes removal[J]. Chemical Engineering Journal,2022,427:131668. doi:10.1016/j.cej.2021.131668
|
59 |
FENG Qingying, ZHAN Yingqing, YANG Wei,et al. Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2T x MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics[J]. Journal of Colloid and Interface Science,2022,612:156-170. doi:10.1016/j.jcis.2021.12.160
|
60 |
HU Jiaxin, ZHAN Yingqing, ZHANG Guiyuan,et al. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water separation in harsh environments[J]. Journal of Membrane Science,2021,637:119627. doi:10.1016/j.memsci.2021.119627
|