1 |
胥瑞晨,逄勇. 稻壳生物炭对水中低浓度Pb(Ⅱ)的吸附特性[J]. 工业水处理,2020,40(3):35-38.
|
|
XU Ruichen, PANG Yong. Adsorption characteristics of rice husk biochar on low-concentration Pb(Ⅱ) from water[J]. Industrial Water Treatment,2020,40(3):35-38.
|
2 |
TAN Xuefei, ZHU Shishu, WANG Rupeng,et al. Role of biochar surface characteristics in the adsorption of aromatic compounds:Pore structure and functional groups[J]. Chinese Chemical Letters, 2021, 32(10):2939-2946. doi: 10.1016/j.cclet.2021.04.059
|
3 |
刘凌沁. 流化床制备生物炭实验及吸附性能评价研究[D]. 南京:东南大学,2021.
|
|
LIU Lingqin. Study on production of biochar in fluidized bed reactor and adsorption performance[D]. Nanjing:Southeast University,2021.
|
4 |
LARGITTE L, PASQUIER R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon[J]. Chemical Engineering Research and Design, 2016, 109:495-504. doi: 10.1016/j.cherd.2016.02.006
|
5 |
ALBERTI G, AMENDOLA V, PESAVENTO M,et al. Beyond the synthesis of novel solid phases:Review on modelling of sorption phenomena[J]. Coordination Chemistry Reviews, 2012, 256(1/2):28-45. doi: 10.1016/j.ccr.2011.08.022
|
6 |
RODRÍGUEZ-ROMERO J A, MENDOZA-CASTILLO D I, REYNEL-ÁVILA H E,et al. Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):103928. doi: 10.1016/j.jece.2020.103928
|
7 |
TANG Jingchun, ZHU Wenying, KOOKANA R,et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering, 2013, 116(6):653-659. doi: 10.1016/j.jbiosc.2013.05.035
|
8 |
PYO J, HONG S M, KWON Y S,et al. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil[J]. The Science of the Total Environment, 2020, 741:140162. doi: 10.1016/j.scitotenv.2020.140162
|
9 |
SUN Yang, ZHANG Yuyao, LU Lun,et al. The application of machine learning methods for prediction of metal immobilization remediation by biochar amendment in soil[J]. The Science of the Total Environment, 2022, 829:154668. doi: 10.1016/j.scitotenv.2022.154668
|
10 |
ZHAO Ying, LI Yuelei, YANG Fan. A state-of-the-art review on modeling the biochar effect:Guidelines for beginners[J]. Science of the Total Environment, 2022, 802:149861. doi: 10.1016/j.scitotenv.2021.149861
|
11 |
ZHAO Ying, FAN Da, LI Yuelei, et al. Application of machine learning in predicting the adsorption capacity of organic compounds onto biochar and resin[J]. Environmental Research, 2022, 208: 112694. doi: 10.1016/j.envres.2022.112694
|
12 |
CHONG S, LEE S, KIM B,et al. Applications of machine learning in metal-organic frameworks[J]. Coordination Chemistry Reviews, 2020, 423:213487. doi: 10.1016/j.ccr.2020.213487
|
13 |
XU Xinkai, AGGARWAL D, SHANKAR K. Instantaneous property prediction and inverse design of plasmonic nanostructures using machine learning:Current applications and future directions[J]. Nanomaterials, 2022, 12(4):633. doi: 10.3390/nano12040633
|
14 |
SHEN Jiangfeng, YAN Mengguo, FANG Minghong,et al. Machine learning-based modeling approaches for estimating pyrolysis products of varied biomass and operating conditions[J]. Bioresource Technology Reports, 2022, 20:101285. doi: 10.1016/j.biteb.2022.101285
|
15 |
HANANDEH A EL, MAHDI Z, IMTIAZ M S. Modelling of the adsorption of Pb,Cu and Ni ions from single and multi-component aqueous solutions by date seed derived biochar:Comparison of six machine learning approaches[J]. Environmental Research, 2021, 192:110338. doi: 10.1016/j.envres.2020.110338
|
16 |
PALANSOORIYA K N, LI Jie, DISSANAYAKE P D,et al. Prediction of soil heavy metal immobilization by biochar using machine learning[J]. Environmental Science & Technology, 2022, 56(7):4187-4198. doi: 10.1021/acs.est.1c08302
|
17 |
TSAI C F, LI Miaoling, LIN Weichao. A class center based approach for missing value imputation[J]. Knowledge-Based Systems, 2018, 151:124-135. doi: 10.1016/j.knosys.2018.03.026
|
18 |
ZHANG Shichao. Parimputation:From imputation and null-imputation to partially imputation[J]. IEEE Intelligent Informatics Bull,2008,9:32-38.
|
19 |
ZHAO Ying, LI Yuelei, FAN Da,et al. Application of kernel extreme learning machine and Kriging model in prediction of heavy metals removal by biochar[J]. Bioresource Technology, 2021, 329:124876. doi: 10.1016/j.biortech.2021.124876
|
20 |
ZHOU Jian, QIU Yingui, ZHU Shuangli,et al. Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization[J]. Underground Space, 2021, 6(5):506-515. doi: 10.1016/j.undsp.2020.05.008
|
21 |
HUANG Boyang, Qixin LÜ, TANG Zhixian,et al. Machine learning methods to predict cadmium(Cd) concentration in rice grain and support soil management at a regional scale[J]. Fundamental Research, 2023, 4(5):1196-1205. doi: 10.1016/j.fmre.2023.02.016
|
22 |
SHI Liang, LI Jie, PALANSOORIYA K N,et al. Modeling phytoremediation of heavy metal contaminated soils through machine learning[J]. Journal of Hazardous Materials, 2023, 441:129904. doi: 10.1016/j.jhazmat.2022.129904
|
23 |
PANT J, PANT R P, KUMAR SINGH M,et al. Analysis of agricultural crop yield prediction using statistical techniques of machine learning[J]. Materials Today:Proceedings, 2021, 46:10922-10926. doi: 10.1016/j.matpr.2021.01.948
|
24 |
LEI Lang, PANG Ruirui, HAN Zhibang,et al. Current applications and future impact of machine learning in emerging contaminants:A review[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(20):1817-1835. doi: 10.1080/10643389.2023.2190313
|
25 |
金佩薇,姚燕,梁晓瑜,等. 垃圾图像识别研究进展[J]. 环境工程,2022,40(1):196-206.
|
|
JIN Peiwei, YAO Yan, LIANG Xiaoyu,et al. Overview of researches on municipal solid waste image recognition[J]. Environmental Engineering,2022,40(1):196-206.
|
26 |
GU G H,NOH J, KIM I,et al. Machine learning for renewable energy materials[J]. Journal of Materials Chemistry A, 2019, 7(29):17096-17117. doi: 10.1039/c9ta02356a
|
27 |
JAMEI M, KARBASI M, ALAWI O A,et al. Earth skin temperature long-term prediction using novel extended Kalman filter integrated with Artificial Intelligence models and information gain feature selection[J]. Sustainable Computing:Informatics and Systems, 2022, 35:100721. doi: 10.1016/j.suscom.2022.100721
|
28 |
EMMERT-STREIB F, DEHMER M. Taxonomy of machine learning paradigms:A data-centric perspective[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2022, 12(5):e1470. doi: 10.1002/widm.1470
|
29 |
ZHU Xinzhe, LI Yinan, WANG Xiaonan. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions[J]. Bioresource Technology, 2019, 288:121527. doi: 10.1016/j.biortech.2019.121527
|
30 |
KOESHIDAYATULLAH A. Optimizing image-based deep learning for energy geoscience via an effortless end-to-end approach[J]. Journal of Petroleum Science and Engineering, 2022, 215:110681. doi: 10.1016/j.petrol.2022.110681
|
31 |
BURNHAM K P, ANDERSON D R, HUYVAERT K P. AIC model selection and multimodel inference in behavioral ecology:Some background,observations,and comparisons[J]. Behavioral Ecology and Sociobiology, 2011, 65(1):23-35. doi: 10.1007/s00265-010-1029-6
|
32 |
HE Zedi, WANG Qiongfang, RAO Pinhua,et al. WS 2 significantly enhances the degradation of sulfachloropyridazine by Fe(Ⅲ)/persulfate[J]. The Science of the Total Environment, 2022, 850:157987. doi: 10.1016/j.scitotenv.2022.157987
|
33 |
BHAGAT S K, PARAMASIVAN M, AL-MUKHTAR M,et al. Prediction of lead(Pb) adsorption on attapulgite clay using the feasibility of data intelligence models[J]. Environmental Science and Pollution Research, 2021, 28(24):31670-31688. doi: 10.1007/s11356-021-12836-7
|
34 |
RAJENDRAN R, KARTHI A. Heart disease prediction using entropy based feature engineering and ensembling of machine learning classifiers[J]. Expert Systems with Applications, 2022, 207:117882. doi: 10.1016/j.eswa.2022.117882
|
35 |
CHEN An, ZHANG Xu, ZHOU Zhen. Machine learning:Accelerating materials development for energy storage and conversion[J]. InfoMat, 2020, 2(3):553-576. doi: 10.1002/inf2.12094
|
36 |
QIN Fanzhi, LI Jialing, ZHANG Chen,et al. Biochar in the 21st century:A data-driven visualization of collaboration,frontier identification,and future trend[J]. The Science of the Total Environment, 2022, 818:151774. doi: 10.1016/j.scitotenv.2021.151774
|
37 |
ASUQUO E, MARTIN A, NZEREM P,et al. Adsorption of Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions using mesoporous activated carbon adsorbent:Equilibrium,kinetics and characterisation studies[J]. Journal of Environmental Chemical Engineering, 2017, 5(1):679-698. doi: 10.1016/j.jece.2016.12.043
|
38 |
AYAWEI N, EBELEGI A N, WANKASI D. Modelling and interpretation of adsorption isotherms[J]. Journal of Chemistry, 2017, 2017:3039817. doi: 10.1155/2017/3039817
|
39 |
|
|
KANG Caiyan, LI Qiuyan, LIU Jinyu,et al. Effect of biochar at different pyrolysis temperatures on the adsorption of Cd 2+ [J]. Industrial Water Treatment, 2021, 41(5):68-72. doi: 10.11894/iwt.2020-0786
|
40 |
AHMAD Z, GAO Bin, MOSA A,et al. Removal of Cu(Ⅱ),Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180:437-449. doi: 10.1016/j.jclepro.2018.01.133
|
41 |
PAN G, LISS P S, KROM M D. Particle concentration effect and adsorption reversibility[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151(1/2):127-133. doi: 10.1016/s0927-7757(98)00636-0
|
42 |
CHEN Xinyu, HOSSAIN M F, DUAN Chengyu,et al. Isotherm models for adsorption of heavy metals from water:A review[J]. Chemosphere, 2022, 307:135545. doi: 10.1016/j.chemosphere.2022.135545
|
43 |
BHAGAT S K, TUNG T M, YASEEN Z M. Development of artificial intelligence for modeling wastewater heavy metal removal:State of the art,application assessment and possible future research[J]. Journal of Cleaner Production, 2020, 250:119473. doi: 10.1016/j.jclepro.2019.119473
|
44 |
KOOPAL L, TAN Wenfeng, AVENA M. Equilibrium mono- and multicomponent adsorption models:From homogeneous ideal to heterogeneous non-ideal binding[J]. Advances in Colloid and Interface Science, 2020, 280:102138. doi: 10.1016/j.cis.2020.102138
|
45 |
MOZAFFARI MAJD M, KORDZADEH-KERMANI V, GHALAN-DARI V,et al. Adsorption isotherm models:A comprehensive and systematic review(2010-2020)[J]. The Science of the Total Environment, 2022, 812:151334. doi: 10.1016/j.scitotenv.2021.151334
|
46 |
REYNEL-AVILA H E, MENDOZA-CASTILLO D I, BONILLA-PETRICIOLET A. Relevance of anionic dye properties on water decolorization performance using bone char:Adsorption kinetics,isotherms and breakthrough curves[J]. Journal of Molecular Liquids, 2016, 219:425-434. doi: 10.1016/j.molliq.2016.03.051
|
47 |
HERNANDEZ-HERNANDEZ L E, BONILLA-PETRICIOLET A, MENDOZA-CASTILLO D,et al. Antagonistic binary adsorption of heavy metals using stratified bone char columns[J]. Journal of Molecular Liquids, 2017, 241:334-346. doi: 10.1016/j.molliq.2017.05.148
|
48 |
GORDILLO-RUÍZ F A, SÁNCHEZ-RUÍZ F J, MENDOZA-CASTILLO D I,et al. Dynamic fuzzy neural network for simulating the fixed-bed adsorption of cadmium,nickel,and zinc on bone char[J]. International Journal of Environmental Science and Technology, 2018, 15(5):915-926. doi: 10.1007/s13762-017-1456-2
|
49 |
RANGANATHAN P, PRAMESH C S, AGGARWAL R. Common pitfalls in statistical analysis:Logistic regression[J]. Perspectives in Clinical Research, 2017, 8(3):148-151. doi: 10.4103/picr.picr_87_17
|
50 |
HASSANIPOUR S, GHAEM H, ARAB-ZOZANI M,et al. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients:A systematic review and meta-analysis[J]. Injury, 2019, 50(2):244-250. doi: 10.1016/j.injury.2019.01.007
|
51 |
|
|
WANG Daohan, LI Jingyang, TANG Jiaxi. Adsorption of cadmium in solution by biochar at different pyrolysis temperatures[J]. Industrial Water Treatment, 2020, 40(1):18-23. doi: 10.11894/iwt.2018-1173
|
52 |
SINGH K P, GUPTA S, SINGH A K,et al. Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite[J]. Chemical Engineering Journal, 2010, 165(1):151-160. doi: 10.1016/j.cej.2010.09.010
|
53 |
万顺利,李燕,陈卫旸,等. 硝酸酸化生物炭强化去除水中Pb(Ⅱ)和Cd(Ⅱ)的特性[J]. 工业水处理,2021,41(8):58-64.
|
|
WAN Shunli, LI Yan, CHEN Weiyang,et al. Enhanced removal of Pb(Ⅱ) and Cd(Ⅱ)from water by nitric acid treated biochar[J]. Industrial Water Treatment,2021,41(8):58-64.
|
54 |
TAOUFIK N, BOUMYA W, ACHAK M,et al. The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning[J]. The Science of the Total Environment, 2022, 807(Pt 1):150554. doi: 10.1016/j.scitotenv.2021.150554
|
55 |
LAKSHMI D, AKHIL D, KARTIK A,et al. Artificial intelligence(AI) applications in adsorption of heavy metals using modified biochar[J]. The Science of the Total Environment, 2021, 801:149623. doi: 10.1016/j.scitotenv.2021.149623
|
56 |
ZHU Xinzhe, WANG Xiaonan, OK Y S. The application of machine learning methods for prediction of metal sorption onto biochars[J]. Journal of Hazardous Materials, 2019, 378:120727. doi: 10.1016/j.jhazmat.2019.06.004
|
57 |
WANG Yu, WANG Chunrong, HUANG Xiaoyan,et al. Guideline for modeling solid-liquid adsorption:Kinetics,isotherm,fixed bed,and thermodynamics[J]. Chemosphere, 2024, 349:140736. doi: 10.1016/j.chemosphere.2023.140736
|
58 |
ZHANG Wentao, HUANG Wenguang, TAN Jie,et al. Modeling,optimization and understanding of adsorption process for pollutant removal via machine learning:Recent progress and future perspectives[J]. Chemosphere, 2023, 311(Pt 1):137044. doi: 10.1016/j.chemosphere.2022.137044
|
59 |
LATA S, PRABHAKAR R, ADAK A,et al. As(Ⅴ) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis[J]. Environmental Science and Pollution Research, 2019, 26(31):32175-32188. doi: 10.1007/s11356-019-06300-w
|
60 |
BINGÖL D, HERCAN M, ELEVLI S,et al. Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin[J]. Bioresource Technology, 2012, 112:111-115. doi: 10.1016/j.biortech.2012.02.084
|
61 |
WONG Y J, ARUMUGASAMY S K, CHUNG C H,et al. Comparative study of artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS) and multiple linear regression(MLR) for modeling of Cu(Ⅱ) adsorption from aqueous solution using biochar derived from rambutan(Nephelium lappaceum) peel[J]. Environmental Monitoring and Assessment, 2020, 192(7):439. doi: 10.1007/s10661-020-08268-4
|
62 |
LI Mingrun, WEI Dong, LIU Ting,et al. EDTA functionalized magnetic biochar for Pb(Ⅱ) removal:Adsorption performance,mechanism and SVM model prediction[J]. Separation and Purification Technology, 2019, 227:115696. doi: 10.1016/j.seppur.2019.115696
|
63 |
ZHENG Xiaolei, NGUYEN H. A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm[J]. Chemosphere, 2022, 287:132251. doi: 10.1016/j.chemosphere.2021.132251
|
64 |
KE Bo, NGUYEN H, BUI X N,et al. Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network[J]. Journal of Environmental Management, 2021, 293:112808. doi: 10.1016/j.jenvman.2021.112808
|
65 |
DASHTI A, RAJI M, RIASAT HARAMI H,et al. Biochar performance evaluation for heavy metals removal from industrial wastewater based on machine learning:Application for environmental protection[J]. Separation and Purification Technology, 2023, 312:123399. doi: 10.1016/j.seppur.2023.123399
|
66 |
KE Bo, NGUYEN H, BUI X N,et al. Predicting the sorption efficiency of heavy metal based on the biochar characteristics,metal sources,and environmental conditions using various novel hybrid machine learning models[J]. Chemosphere, 2021, 276:130204. doi: 10.1016/j.chemosphere.2021.130204
|
67 |
TALEBKEIKHAH F, RASAM S, TALEBKEIKHAH M,et al. Investigation of effective processes parameters on lead(Ⅱ) adsorption from wastewater by biochar in mild air oxidation pyrolysis process[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(16):3975-3995. doi: 10.1080/03067319.2020.1777291
|
68 |
HAPFELMEIER A,ULM K. A new variable selection approach using Random Forests[J]. Computational Statistics & Data Analysis, 2013, 60:50-69. doi: 10.1016/j.csda.2012.09.020
|
69 |
LI Jie, PAN Lanjia, SUVARNA M,et al. Fuel properties of hydrochar and pyrochar:Prediction and exploration with machine learning[J]. Applied Energy, 2020, 269:115166. doi: 10.1016/j.apenergy.2020.115166
|
70 |
杨正理,史文,陈海霞,等. 大数据背景下采用互信息与随机森林算法的空气质量预测[J]. 环境工程,2019,37(3):180-185.
|
|
YANG Zhengli, SHI Wen, CHEN Haixia,et al. Air quality forecasting with mutual information and random forests based on big[J]. Environmental Engineering,2019,37(3):180-185.
|
71 |
FAISAL A A H, NASSIR Z S, RASHID H M,et al. Neural network for modeling the capture of lead and cadmium ions from wastewater using date palm stones[J]. International Journal of Environmental Science and Technology, 2022, 19(11):10563-10576. doi: 10.1007/s13762-021-03883-1
|
72 |
NGUYEN X C, DOAN T O, HOANG T Q,et al. Evaluation and machine learning-based prediction of Zn 2+ treatment by the spirulina platensis biomaterial at packed columns[J]. SSRN Electronic Journal, 2022,DOI: 10.2139/ssrn.4203335 .
|
73 |
ZHU Xinzhe, XU Zibo, YOU Siming,et al. Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(Ⅵ) removal by engineered biochar[J]. Chemical Engineering Journal, 2022, 428:131967. doi: 10.1016/j.cej.2021.131967
|
74 |
YAN Changchun, WANG Xuejiang, XIA Siqing,et al. Mechanistic insights into the removal of As(Ⅲ) and As(Ⅴ) by iron modified carbon based materials with the aid of machine learning[J]. Chemosphere, 2023, 321:138125. doi: 10.1016/j.chemosphere.2023.138125
|
75 |
LIU Jingxin, XU Zelin, ZHANG Wenjuan. Unraveling the role of Fe in As(Ⅲ & Ⅴ) removal by biochar via machine learning exploration[J]. Separation and Purification Technology, 2023, 311:123245. doi: 10.1016/j.seppur.2023.123245
|
76 |
MOLNAR C, CASALICCHIO G, BISCHL B. Interpretable machine learning:A brief history,state-of-the-art and challen-ges[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham:Springer, 2020:417-431. doi: 10.1007/978-3-030-65965-3_28
|
77 |
WAN Zhonghao, SUN Yuqing, TSANG D C W,et al. Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar[J]. Chemical Engineering Journal, 2020, 395:125138. doi: 10.1016/j.cej.2020.125138
|
78 |
ZHU Xinzhe, WAN Zhonghao, TSANG D C W,et al. Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption[J]. Chemical Engineering Journal, 2021, 406:126782. doi: 10.1016/j.cej.2020.126782
|
79 |
XU Xiaoyun, HUANG Huang, ZHANG Yue,et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(Ⅵ) during its sorption[J]. Environmental Pollution, 2019, 244:423-430. doi: 10.1016/j.envpol.2018.10.068
|
80 |
OH W D, LIM T T. Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal:An overview[J]. Chemical Engineering Journal, 2019, 358:110-133. doi: 10.1016/j.cej.2018.09.203
|
81 |
HASSAN M, LIU Yanju, NAIDU R,et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents:A meta-analysis[J]. Science of the Total Environment, 2020, 744:140714. doi: 10.1016/j.scitotenv.2020.140714
|
82 |
WAN Zhonghao, SUN Yuqing, TSANG D C W,et al. Sustainable remediation with an electroactive biochar system:Mechanisms and perspectives[J]. Green Chemistry, 2020, 22(9):2688-2711. doi: 10.1039/d0gc00717j
|
83 |
HE Juan, XIAO Yao, TANG Jingchun,et al. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect[J]. Science of the Total Environment, 2019, 690:768-777. doi: 10.1016/j.scitotenv.2019.07.043
|
84 |
YUAN Yong, BOLAN N, PRÉVOTEAU A,et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246:271-281. doi: 10.1016/j.biortech.2017.06.154
|
85 |
LIU Kai, LI Fangbai, ZHAO Xiaolei,et al. The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI:Surface area versus electrochemical property[J]. Chemical Engineering Journal, 2021, 406:126851. doi: 10.1016/j.cej.2020.126851
|
86 |
MORENO-PIRAJÁN J C, GÓMEZ-CRUZ R, GARCÍA-CUELLO V S,et al. Binary system Cu(Ⅱ)/Pb(Ⅱ) adsorption on activated carbon obtained by pyrolysis of cow bone study[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(1):122-128. doi: 10.1016/j.jaap.2010.06.007
|