| [1] |
XIA Mengmeng, NIU Qiuya, QU Xiyao,et al. Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar[J]. Environmental Pollution, 2023, 339:122728. doi: 10.1016/j.envpol.2023.122728
|
| [2] |
ZHANG Shudong, HOU Jinju, ZHANG Xiaotong,et al. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T[J]. Chemosphere, 2024, 351:141288. doi: 10.1016/j.chemosphere.2024.141288
|
| [3] |
SINGH A, SRIVASTAVA A, SAIDULU D,et al. Advancements of sequencing batch reactor for industrial wastewater treatment:Major focus on modifications,critical operational parameters,and future perspectives[J]. Journal of Environmental Management, 2022, 317:115305. doi: 10.1016/j.jenvman.2022.115305
|
| [4] |
LI Shanshan, PAN Yunhao, WU Yuanyuan,et al. Single and combined effect of divalent copper and oxytetracycline on the performance,microbial community and enzymatic activity of sequencing batch reactors[J]. Environmental Technology & Innovation, 2020, 20:101048. doi: 10.1016/j.eti.2020.101048
|
| [5] |
|
|
LI Xiang. Screening of oxytetracycline degrading bacteria and its strengthening effect on aerobic granular sludge system[D]. Lanzhou:Lanzhou University of Technology, 2019. doi: 10.1016/j.jenvman.2020.111115
|
| [6] |
CHEN Xiuli, ZHU Ying, YAN Shuang,et al. Enhanced tetracycline removal in sequencing batch reactors by bioaugmentation using tetX-carrying strains:Efficiency and mechanisms[J]. Journal of Hazardous Materials, 2024, 480:136118. doi: 10.1016/j.jhazmat.2024.136118
|
| [7] |
WANG Qinghong, DENG Jingmin, LIANG Jiahao,et al. Biochar immobilized petroleum degrading consortium for enhanced granulation and treatment of synthetic oil refinery wastewater[J]. Bioresource Technology Reports, 2022, 17:100909. doi: 10.1016/j.biteb.2021.100909
|
| [8] |
GUAN Rui, WANG Lei, ZHAO Ying,et al. The mechanism of DEHP degradation by the combined action of biochar and Arthrobacter sp. JQ-1:Mechanisms insight from bacteria viability,degradation efficiency and changes in extracellular environment[J]. Chemosphere, 2023, 341:140093. doi: 10.1016/j.chemosphere.2023.140093
|
| [9] |
GAO Degui, HUANG Yuefei, ZHOU Shungui,et al. Seawater boosts oxytetracycline(OTC) residues in struvite via hydroxyapatite(HAP) and dissolved organic matter(DOM) co-precipitation[J]. Journal of Hazardous Materials, 2024, 480:136355. doi: 10.1016/j.jhazmat.2024.136355
|
| [10] |
许彬. 抗生素菌渣生物炭的制备与改性及其强化厌氧消化性能研究[D]. 石家庄:河北科技大学,2022.
|
|
XU Bin. Preparation and modification of antibiotics bacterial residue biochar and its enhancement of anaerobic digestion performance[D]. Shijiazhuang:Hebei University of Science and Technology,2022.
|
| [11] |
史文燕. 四环素对SBR硝化系统脱氮性能及微生物群落结构的影响[D]. 兰州:兰州交通大学,2021.
|
|
SHI Wenyan. Effects of tetracycline on nitrogen removal performance and microbial community structure in SBR nitrification system[D]. Lanzhou:Lanzhou Jiatong University,2021.
|
| [12] |
LIU Shuli, DAIGGER G T, LIU Bingtao,et al. Enhanced performance of simultaneous carbon,nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor(AOA-SBR) system by alternating the cycle times[J]. Bioresource Technology, 2020, 301:122750. doi: 10.1016/j.biortech.2020.122750
|
| [13] |
黄晓霞,邱兆富,曹国民,等. 改良型SBR工艺对奶牛场废水中抗生素的去除效果[J]. 中国给水排水,2022,38(1):9-15.
|
|
HUANG Xiaoxia, QIU Zhaofu, CAO Guomin,et al. Removal of antibiotics from dairy farm wastewater by modified SBR process[J]. China Water & Wastewater,2022,38(1):9-15.
|
| [14] |
WANG Xiaochun, SHEN Jimin, KANG Jing,et al. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR[J]. Water Research, 2019, 161:308-318. doi: 10.1016/j.watres.2019.06.014
|
| [15] |
王宇斌,王望泊,王刚,等. 基于正交试验的交变磁场除垢影响因素作用规律[J]. 工业水处理,2019,39(8):28-31.
|
|
WANG Yubin, WANG Wangbo, WANG Gang,et al. Regular effect on influence factors of descaling by alternating magnetic field based on orthogonal experiment[J]. Industrial Water Treatment,2019,39(8):28-31.
|
| [16] |
李永昌. 生物聚沉耦合SBR处理猪场废水效果研究[D]. 南京:南京农业大学,2021.
|
|
LI Yongchang. Study on the effect of bio-coagulation coupled SBR on the treatment of pig farm wastewater[D]. Nanjing:Nanjing Agricultural University,2021.
|
| [17] |
潘芳慧. 利用SBR中微颗粒生物炭生物膜对猪场消化液废水的脱氮研究[D]. 芜湖:安徽师范大学,2021.
|
|
PAN Fanghui. Study on nitrogen removal from digestion fluid wastewater of pig farm using microparticle biochar biofilm in SBR[D]. Wuhu:Anhui Normal University,2021.
|
| [18] |
LIU Shuli, LI Heng, KANG Jia,et al. Improving simultaneous N,P,and C removal and microbial population dynamics in an anaerobic-aerobic-anoxic SBR(A-O-A-SBR) treating municipal wastewater by altering organic loading rate(OLR)[J]. Environmental Technology & Innovation, 2021, 24:102081. doi: 10.1016/j.eti.2021.102081
|
| [19] |
MA Jingwei, JI Yaning, FU Zhidong,et al. Performance of anaerobic/oxic/anoxic simultaneous nitrification,denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter:Effect of aeration time[J]. Bioresource Technology, 2023, 384:129312. doi: 10.1016/j.biortech.2023.129312
|
| [20] |
田雅婕. 养猪场废水SBR-UMSR处理系统的效能及抗生素与抗性基因去除机制[D]. 哈尔滨:哈尔滨工业大学,2022.
|
|
TIAN Yajie. Efficiency of SBR-UMSR treatment system for pig farm wastewater and mechanism of antibiotic and resistance gene removal[D]. Harbin:Harbin Institute of Technology,2022.
|
| [21] |
KARIM A V, SHRIWASTAV A. Integrated sonophotocatalytic oxidation and SBR processes for the effective treatment of antibiotics with an emphasis on process optimization and microbial diversity[J]. Journal of Environmental Chemical Engineering, 2023, 11(2):109632. doi: 10.1016/j.jece.2023.109632
|
| [22] |
李炳堂. 环丙沙星降解菌的分离鉴定、降解特性及其生物强化性能研究[D]. 武汉:华中科技大学,2022.
|
|
LI Bingtang. Isolation,identification,degradation characteristics and biostrengthening performance of ciprofloxacin-degrading bacteria[D]. Wuhan:Huazhong University of Science and Technology,2022.
|
| [23] |
|
|
WANG Kening. Treatment of wastewater containing quinoline by bioenhanced and long-term acclimated aerobic granular sludge[D]. Beijing:Beijing University of Chemical Technology, 2024. doi: 10.1016/j.biteb.2023.101462
|
| [24] |
OHORE O E, QIN Zhirui, SANGANYADO E,et al. Ecological impact of antibiotics on bioremediation performance of constructed wetlands:Microbial and plant dynamics,and potential antibiotic resistance genes hotspots[J]. Journal of Hazardous Materials, 2022, 424:127495. doi: 10.1016/j.jhazmat.2021.127495
|
| [25] |
STIBOROVA H, STREJCEK M, MUSILOVA L,et al. Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge[J]. Chemosphere, 2020, 238:124629. doi: 10.1016/j.chemosphere.2019.124629
|
| [26] |
WEI Ziyan, FENG Min, ZHANG Dingxi,et al. Deep insights into the assembly mechanisms,co-occurrence patterns,and functional roles of microbial community in wastewater treatment plants[J]. Environmental Research, 2024, 263:120029. doi: 10.1016/j.envres.2024.120029
|
| [27] |
陈赛男,钟为章,牛建瑞,等. 复合菌剂对土霉素菌渣好氧堆肥腐熟及微生物群落结构影响[J]. 环境工程学报,2022,16(8):2672-2681.
|
|
CHEN Sainan, ZHONG Weizhang, NIU Jianrui,et al. Effect of compound bacterial agent on maturity and microbial community structure of oxytetracycline residue aerobic composting[J]. Chinese Journal of Environmental Engineering,2022,16(8):2672-2681.
|
| [28] |
LIU Zhengjiao, WANG Ziqian, DING Dahu. Evaluation of baffle-plate bioreactor coupling with adsorption column for the remediation of aquaculture wastewater[J]. Journal of Water Process Engineering, 2024, 66:106077. doi: 10.1016/j.jwpe.2024.106077
|
| [29] |
JIN Hongyu, NIE Zimeng, NIU Hongyu,et al. Detoxification of typical nitrogenous heterocyclic compound from pharmaceutical wastewater by mixed microbial consortia[J]. Chemosphere, 2023, 335:139000. doi: 10.1016/j.chemosphere.2023.139000
|
| [30] |
GIL-PULIDO B, TARPEY E, ALMEIDA E L,et al. Evaluation of dairy processing wastewater biotreatment in an IASBR system:Aeration rate impacts on performance and microbial ecology[J]. Biotechnology Reports, 2018, 19:e00263. doi: 10.1016/j.btre.2018.e00263
|
| [31] |
WEI Haodong, LIU Cuiyun, WANG Yiyang,et al. Transformation trend of nitrogen and phosphorus in the sediment of the sewage pipeline and their distribution along the pipeline[J]. Science of the Total Environment, 2023, 857:159413. doi: 10.1016/j.scitotenv.2022.159413
|
| [32] |
ZHANG Cuiya, GAO Fan, WU Yinghai,et al. Small-sized salt-tolerant denitrifying and phosphorus removal aerobic granular sludge cultivated with mariculture waste solids to treat synthetic mariculture wastewater[J]. Biochemical Engineering Journal, 2022, 181:108396. doi: 10.1016/j.bej.2022.108396
|
| [33] |
BONASSA G, VENTURIN B, BOLSAN A C,et al. Performance and microbial features of Anammox in a single-phase reactor under progressive nitrogen loading rates for wastewater treatment plants[J]. Journal of Environmental Chemical Engineering, 2022, 10(1):107028. doi: 10.1016/j.jece.2021.107028
|
| [34] |
SHI Yijing, YANG Lei, LIAO Shengfa,et al. Responses of aerobic granular sludge to fluoroquinolones:Microbial community variations,and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2021, 414:125527. doi: 10.1016/j.jhazmat.2021.125527
|
| [35] |
LI Huankai, LIU Hui, ZENG Qingqing,et al. Isolation and appraisal of a non-fermentative bacterium,Delftia tsuruhatensis,as denitrifying phosphate-accumulating organism and optimal growth conditions[J]. Journal of Water Process Engineering, 2020, 36:101296. doi: 10.1016/j.jwpe.2020.101296
|