1 |
COSTA E, PÉREZ J, KREFT J U. Why is metabolic labour divided in nitrification?[J]. Trends in Microbiology, 2006, 14(5):213-219. doi: 10.1016/j.tim.2006.03.006
|
2 |
WINOGRADSK S. Recherches sur les organismes de la nitrification[J]. Annales de l" Institut Pasteur,1890,4:213-231.
|
3 |
KÖNNEKE M, BERNHARD A E, DE LA TORRE J R,et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546. doi: 10.1038/nature03911
|
4 |
PFEIFFER T, BONHOEFFER S. Evolution of cross-feeding in microbial populations[J]. The American Naturalist, 2004, 163(6):E126-E135. doi: 10.1086/383593
|
5 |
DAIMS H, LEBEDEVA E V, PJEVAC P,et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509. doi: 10.1038/nature16461
|
6 |
VAN KESSEL M A H J, SPETH D R, ALBERTSEN M,et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559. doi: 10.1038/nature16459
|
7 |
ALZERRECA J J, NORTON J M, KLOTZ M G. The Amo operon in marine,ammonia-oxidizing gamma-proteobacteria[J]. FEMS Microbiology Letters, 1999, 180(1):21-29. doi: 10.1111/j.1574-6968.1999.tb08773.x
|
8 |
HYMAN M R, WOOD P M. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene[J]. The Biochemical Journal, 1985, 227(3):719-725. doi: 10.1042/bj2270719
|
9 |
GAO Jingfeng, FAN Xiaoyan, PAN Kailing,et al. Diversity,abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter[J]. Scientific Reports, 2016, 6:38785. doi: 10.1038/srep38785
|
10 |
UTÅKER J B, BAKKEN L, JIANG QING qiao,et al. Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences[J]. Systematic and Applied Microbiology, 1995, 18(4):549-559. doi: 10.1016/s0723-2020(11)80415-7
|
11 |
PROSSER J I, NICOL G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment[J]. Environmental Microbiology, 2008, 10(11):2931-2941. doi: 10.1111/j.1462-2920.2008.01775.x
|
12 |
PJEVAC P, SCHAUBERGER C, POGHOSYAN L,et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8:1508. doi: 10.3389/fmicb.2017.01508
|
13 |
XIA Fei, WANG Jiangong, ZHU Ting,et al. Ubiquity and diversity of complete ammonia oxidizers(comammox)[J]. Applied and Environmental Microbiology, 2018, 84(24):e013908. doi: 10.1128/aem.01390-18
|
14 |
LAWSON C E, LÜCKER S. Complete ammonia oxidation:An important control on nitrification in engineered ecosystems?[J]. Current Opinion in Biotechnology, 2018, 50:158-165. doi: 10.1016/j.copbio.2018.01.015
|
15 |
MARTENS-HABBENA W, BERUBE P M, URAKAWA H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature, 2009, 461(7266):976-979. doi: 10.1038/nature08465
|
16 |
PARK B J, PARK S J, YOON D N,et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2010, 76(22):7575-7587. doi: 10.1128/aem.01478-10
|
17 |
JUNG M Y, PARK S J, MIN D,et al. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group 1.1a from an agricultural soil[J]. Applied and Environmental Microbiology, 2011, 77(24):8635-8647. doi: 10.1128/aem.05787-11
|
18 |
TOURNA M, STIEGLMEIER M, SPANG A,et al. Nitrososphaera viennensis,an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20):8420-8425. doi: 10.1073/pnas.1013488108
|
19 |
PALATINSZKY M, HERBOLD C, JEHMLICH N,et al. Cyanate as an energy source for nitrifiers[J]. Nature, 2015, 524(7563):105-108. doi: 10.1038/nature14856
|
20 |
LEBEDEVA E V, HATZENPICHLER R, PELLETIER E,et al. Enrichment and genome sequence of the group 1.1a ammonia-oxidizing archaeon “ Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats[J]. PLoS One, 2013, 8(11):e80835. doi: 10.1371/journal.pone.0080835
|
21 |
DIMITRI KITS K, SEDLACEK C J, LEBEDEVA E V,et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671):269-272. doi: 10.1038/nature23679
|
22 |
HU Hangwei, HE Jizheng. Comammox:A newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils and Sediments, 2017, 17(12):2709-2717. doi: 10.1007/s11368-017-1851-9
|
23 |
BOLLMANN A, BÄR-GILISSEN M J, LAANBROEK H J. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology,2002,68(10):4751-4757.
|
24 |
KOOPS H P, POMMERENING-RÖSER A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J]. FEMS Microbiology Ecology, 2001, 37(1):1-9. doi: 10.1111/j.1574-6941.2001.tb00847.x
|
25 |
KUYPERS M M M. A fight for scraps of ammonia[J]. Nature, 2017, 549(7671):162-163. doi: 10.1038/549162a
|
26 |
CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51):14704-14709. doi: 10.1073/pnas.1611051113
|
27 |
KOZLOWSKI J A, STIEGLMEIER M, SCHLEPER C,et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. The ISME Journal, 2016, 10(8):1836-1845. doi: 10.1038/ismej.2016.2
|
28 |
STEIN L Y. Insights into the physiology of ammonia-oxidizing microorganisms[J]. Current Opinion in Chemical Biology, 2019, 49:9-15. doi: 10.1016/j.cbpa.2018.09.003
|
29 |
|
30 |
PALOMO A, PEDERSEN A G, JANE FOWLER S,et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira [J]. The ISME Journal, 2018, 12(7):1779-1793. doi: 10.1038/s41396-018-0083-3
|
31 |
KOCH H, VAN KESSEL M A H J, LÜCKER S. Complete nitrification:Insights into the ecophysiology of comammox Nitrospira [J]. Applied Microbiology and Biotechnology, 2019, 103(1):177-189. doi: 10.1007/s00253-018-9486-3
|
32 |
KITZINGER K, MARCHANT H K, BRISTOW L A,et al. Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean[J]. Nature Communications, 2020, 11(1):767. doi: 10.1038/s41467-020-14542-3
|
33 |
PACHIADAKI M G, SINTES E, BERGAUER K,et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation[J]. Science, 2017, 358(6366):1046-1051. doi: 10.1126/science.aan8260
|
34 |
|
35 |
WALKER C B, DE LA TORRE J R, KLOTZ M G,et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8818-8823. doi: 10.1073/pnas.0913533107
|
36 |
SPANG A, POEHLEIN A, OFFRE P,et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis:Insights into metabolic versatility and environmental adaptations[J]. Environmental Microbiology, 2012, 14(12):3122-3145. doi: 10.1111/j.1462-2920.2012.02893.x
|
37 |
CAMEJO P Y, SANTO DOMINGO J, MCMAHON K D,et al. Genome-enabled insights into the ecophysiology of the comammox bacterium “ Candidatus nitrospira nitrosa”[J]. mSystems, 2017, 2(5):e0005917. doi: 10.1128/msystems.00059-17
|
38 |
KOCH H, LÜCKER S, ALBERTSEN M,et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36):11371-11376. doi: 10.1073/pnas.1506533112
|
39 |
AKAIKE T, MAEDA H. Quantitation of nitric oxide using 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(PTIO)[J]. Methods in Enzymology, 1996, 268:211-221. doi: 10.1016/s0076-6879(96)68023-9
|
40 |
SHEN Tianlin, STIEGLMEIER M, DAI Jiulan,et al. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors[J]. FEMS Microbiology Letters, 2013, 344(2):121-129. doi: 10.1111/1574-6968.12164
|
41 |
BURKHARDT M, STAMM C, WAUL C,et al. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland[J]. Journal of Environmental Quality, 2005, 34(4):1363-1371. doi: 10.2134/jeq2004.0261
|
42 |
|
43 |
WANG Xiaomin, WANG Shanyun, JIANG Yingying,et al. Comammox bacterial abundance,activity,and contribution in agricultural rhizosphere soils[J]. Science of the Total Environment, 2020, 727:138563. doi: 10.1016/j.scitotenv.2020.138563
|
44 |
XU Guangjing, XU Xiaochen, YANG Fenglin,et al. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules[J]. Journal of Hazardous Materials, 2011, 185(1):249-254. doi: 10.1016/j.jhazmat.2010.09.025
|
45 |
ZHOU Xue, WANG Shuwei, MA Shutan,et al. Effects of commonly used nitrification inhibitors—Dicyandiamide(DCD),3,4-dimethylpyrazole phosphate(DMPP),and nitrapyrin:On soil nitrogen dynamics and nitrifiers in three typical paddy soils[J]. Geoderma, 2020, 380:114637. doi: 10.1016/j.geoderma.2020.114637
|
46 |
MORALES S E,JHA N, SAGGAR S. Impact of urine and the application of the nitrification inhibitor DCD on microbial communities in dairy-grazed pasture soils[J]. Soil Biology and Biochemistry, 2015, 88:344-353. doi: 10.1016/j.soilbio.2015.06.009
|
47 |
SUBBARAO G V, NAKAHARA K, HURTADO M P,et al. Evidence for biological nitrification inhibition in Brachiaria pastures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41):17302-17307. doi: 10.1073/pnas.0903694106
|
48 |
LI Chaoyu, HU Hangwei, CHEN Qinglin,et al. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils[J]. Journal of Soils and Sediments, 2020, 20(2):621-628. doi: 10.1007/s11368-019-02442-z
|
49 |
KONG Xianwang, DUAN Yunfeng, SCHRAMM A,et al. 3,4-Di-methylpyrazole phosphate(DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions[J]. Applied Soil Ecology, 2016, 105:67-75. doi: 10.1016/j.apsoil.2016.03.018
|
50 |
KOU Y P, WEI K, CHEN G X,et al. Effects of 3,4-dimethylpyrazole phosphate and dicyandiamide on nitrous oxide emission in a greenhouse vegetable soil[J]. Plant,Soil and Environment, 2015, 61(1):29-35. doi: 10.17221/762/2014-pse
|
51 |
FLORIO A, CLARK I M, HIRSCH P R,et al. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate(DMPP) on abundance and activity of ammonia oxidizers in soil[J]. Biology and Fertility of Soils, 2014, 50(5):795-807. doi: 10.1007/s00374-014-0897-8
|
52 |
DI HONG jie, CAMERON K C. Inhibition of ammonium oxidation by a liquid formulation of 3,4-dimethylpyrazole phosphate(DMPP) compared with a dicyandiamide(DCD) solution in six New Zealand grazed grassland soils[J]. Journal of Soils and Sediments, 2011, 11(6):1032-1039. doi: 10.1007/s11368-011-0372-1
|
53 |
GU Yan, MI Wenhai, XIE Yinan,et al. Nitrapyrin affects the abundance of ammonia oxidizers rather than community structure in a yellow clay paddy soil[J]. Journal of Soils and Sediments, 2019, 19(2):872-882. doi: 10.1007/s11368-018-2075-3
|
54 |
PALATINSZKY M, HERBOLD C W, SEDLACEK C J,et al. Growth of complete ammonia oxidizers on guanidine[J]. Nature, 2024, 633(8030):646-653. doi: 10.1038/s41586-024-07832-z
|
55 |
QIN Wei, WEI S P, ZHENG Yue,et al. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences[J]. Nature Microbiology, 2024, 9(2):524-536. doi: 10.1038/s41564-023-01593-7
|
56 |
SINNINGHE D, JAAP S. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group 1.1a and 1.1b thaumarchaeota in soil[J]. Applied and Environmental Microbiology, 2012, 78(19):6866-6874. doi: 10.1128/aem.01681-12
|
57 |
PITCHER A, RYCHLIK N, HOPMANS E C,et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis,a thermophilic group 1.1b archaeon[J]. The ISME Journal, 2010, 4(4):542-552. doi: 10.1038/ismej.2009.138
|
58 |
SCHOUTEN S, HOPMANS E C, BAAS M,et al. Intact membrane lipids of “ Candidatus Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic group Ⅰ Crenarchaeota[J]. Applied and Environmental Microbiology, 2008, 74(8):2433-2440. doi: 10.1128/aem.01709-07
|
59 |
TREUSCH A H, LEININGER S, KLETZIN A,et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12):1985-1995. doi: 10.1111/j.1462-2920.2005.00906.x
|
60 |
KASUGA I, NAKAGAKI H, KURISU F,et al. Predominance of ammonia-oxidizing archaea on granular activated carbon used in a full-scale advanced drinking water treatment plant[J]. Water Research, 2010, 44(17):5039-5049. doi: 10.1016/j.watres.2010.07.015
|
61 |
TATARI K, MUSOVIC S, GÜLAY A,et al. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production:Dominance of Nitrospira spp.[J]. Water Research, 2017, 127:239-248. doi: 10.1016/j.watres.2017.10.023
|
62 |
GÜLAY A, MUSOVIC S, ALBRECHTSEN H J,et al. Ecological patterns,diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters[J]. The ISME Journal, 2016, 10(9):2209-2222. doi: 10.1038/ismej.2016.16
|
63 |
FOWLER S J, PALOMO A, DECHESNE A,et al. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities[J]. Environmental Microbiology, 2018, 20(3):1002-1015. doi: 10.1111/1462-2920.14033
|
64 |
WANG Yulin, MA Liping, MAO Yanping,et al. Comammox in drinking water systems[J]. Water Research, 2017, 116:332-341. doi: 10.1016/j.watres.2017.03.042
|
65 |
WANG Mingyuan, HUANG Guohe, ZHAO Zhirong,et al. Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants[J]. Bioresource Technology, 2018, 270:580-587. doi: 10.1016/j.biortech.2018.09.089
|
66 |
WANG Zhong, ZHANG Liang, ZHANG Fangzhai,et al. Nitrite accumulation in comammox-dominated nitrification-denitrification reactors:Effects of DO concentration and hydroxylamine addition[J]. Journal of Hazardous Materials, 2020, 384:121375. doi: 10.1016/j.jhazmat.2019.121375
|
67 |
HOU Jiaying, ZHU Ying, LIU Jinzhong,et al. Competitive enrichment of comammox Nitrospira in floccular sludge[J]. Water Research, 2024, 251:121151. doi: 10.1016/j.watres.2024.121151
|
68 |
PAN Junhao, LI Jiyun, ZHANG Tingting,et al. Complete ammonia oxidation(comammox) at pH 3-4 supports stable production of ammonium nitrate from urine[J]. Water Research, 2024, 257:121686. doi: 10.1016/j.watres.2024.121686
|
69 |
ZHENG Maosheng, WANG Mingyuan, ZHAO Zhirong,et al. Transcriptional activity and diversity of comammox bacteria as a previously overlooked ammonia oxidizing prokaryote in full-scale wastewater treatment plants[J]. Science of the Total Environment, 2019, 656:717-722. doi: 10.1016/j.scitotenv.2018.11.435
|
70 |
PAN Kailing, GAO Jingfeng, FAN Xiaoyan,et al. The more important role of archaea than bacteria in nitrification of wastewater treatment plants in cold season despite their numerical relationships[J]. Water Research, 2018, 145:552-561. doi: 10.1016/j.watres.2018.08.066
|
71 |
TSUCHIYA Y, NAKAGAWA T, TAKAHASHI R. Quantification and phylogenetic analysis of ammonia oxidizers on biofilm carriers in a full-scale wastewater treatment plant[J]. Microbes and Environments, 2020, 35(2):ME19140. doi: 10.1264/jsme2.me19140
|