1 |
Daghrir R , Drogui P , Robert D . Modified TiO2 for environmental photocatalytic applications:a review[J]. Industrial & Engineering Chemistry Research, 2013, 52 (10): 3581- 3599.
URL
|
2 |
Gmurek M , Olak-Kucharczyk M , Ledakowicz S . Photochemical decomposition of endocrine disrupting compounds-a review[J]. Chemical Engineering Journal, 2017, 310, 437- 456.
doi: 10.1016/j.cej.2016.05.014
|
3 |
Kim S , Cho H , Joo H , et al. Evaluation of performance with small and scale-up rotating and flat reactors; photocatalytic degradation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol under solar irradiation[J]. Journal of Hazardous Materials, 2017, 336, 21- 32.
doi: 10.1016/j.jhazmat.2017.04.047
|
4 |
Fujishima A , Honda K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238 (5358): 37- 38.
doi: 10.1038/238037a0
|
5 |
Byrne C , Subramanian G , Pillai S . Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6 (3): 3531- 3555.
doi: 10.1016/j.jece.2017.07.080
|
6 |
Qi K , Cheng B , Yu J , et al. A review on TiO2-based Z-scheme photo-catalysts[J]. Chinese Journal of Catalysis, 2017, 38 (12): 1936- 1955.
doi: 10.1016/S1872-2067(17)62962-0
|
7 |
Paweł M , Alicja M , Beata B , et al. The role of lanthanides in TiO2-based photocatalysis:A review[J]. Applied Catalysis B:Environmental, 2018, 233, 301- 317.
doi: 10.1016/j.apcatb.2018.04.019
|
8 |
Wu R , Liu Y , Lai H , et al. Promotion effect of Pd on TiO2 for visible light photocatalytic degradation of gaseous formaldehyde[J]. Journal of Nanoscience and Nanotechnology, 2014, 14 (9): 6792- 6799.
doi: 10.1166/jnn.2014.8986
|
9 |
Niu M , Huang F , Cui L , et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/Alpha-Fe2O3 semiconductor nanoheterostructures[J]. ACS Nano, 2010, 4 (2): 681- 688.
doi: 10.1021/nn901119a
|
10 |
Li D , Haneda H . Morphologies of zinc oxide particles and their effects on photocatalysis[J]. Chemosphere, 2003, 51 (2): 129- 137.
doi: 10.1016/S0045-6535(02)00787-7
|
11 |
Harish S , Prasad P , Archana J , et al. Synergistic interaction of 2D layered MoS2/ZnS nanocomposite for highly efficient photocatalytic activity under visible light irradiation[J]. Applied Surface Science, 2019, 488, 36- 45.
doi: 10.1016/j.apsusc.2019.05.027
|
12 |
Zou S , Fu Z , Xiang C , et al. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability[J]. Chinese Journal of Catalysis, 2015, 36 (7): 1077- 1085.
doi: 10.1016/S1872-2067(15)60827-0
|
13 |
Jonjana S , Anukorn P , Somchai T , et al. Synthesis, characterization and photocatalysis of heterostructure AgBr/Bi2WO6 nanocomposites[J]. Materials Letters, 2018, 216, 92- 96.
doi: 10.1016/j.matlet.2018.01.005
|
14 |
Mamba G , Mishra A . Graphitic carbon nitride(g-C3N4) nanocomposites:A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B:Environmental, 2016, 198, 347- 377.
doi: 10.1016/j.apcatb.2016.05.052
|
15 |
Malathi A , Madhavan J , Muthupandian A , et al. A review on BiVO4 photocatalyst:Activity enhancement methods for solar photocatalytic applications[J]. Applied Catalysis A, General, 2018, 555, 47- 74.
doi: 10.1016/j.apcata.2018.02.010
|
16 |
Gómez-Pastora J , Dominguez S , Bringas E , et al. Review and perspectives on the use of magnetic nanophotocatalysts(MNPCs) in water treatment[J]. Chemical Engineering Journal, 2017, 407- 427.
URL
|
17 |
Zhang J , Fang J , Ye X , et al. Visible photoactivity and antiphotocorrosion performance of CdS photocatalysts by the hybridization of N-substituted carboxyl group polyaniline[J]. Applied Surface Science, 2019, 480, 557- 564.
doi: 10.1016/j.apsusc.2019.03.020
|
18 |
Li D , Shi W . Recent developments in visible-light photocatalytic degradation of antibiotics[J]. Chinese Journal of Catalysis, 2016, 37 (6): 792- 799.
doi: 10.1016/S1872-2067(15)61054-3
|
19 |
刘旭, 张西慧. 改性TiO2光催化剂催化降解双酚A的研究进展[J]. 工业水处理, 2018, 38 (4): 6- 10.
URL
|
20 |
王雅楠, 李俊航, 杜啟君, 等. 纳米TiO2/Cu2O光催化降解活性艳红X-3B的研究[J]. 工业水处理, 2018, 38 (8): 11- 14.
URL
|
21 |
Yang L , Bai X , Shi J , et al. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants[J]. Applied Catalysis B:Environmental, 2019, 256, 117759.
doi: 10.1016/j.apcatb.2019.117759
|
22 |
徐元盛, 李建伟, 马炎, 等. 硫化镉-二氧化钛/分子筛复合光催化材料制备及性能研究[J]. 无机盐工业, 2019, 51 (6): 83- 87.
URL
|
23 |
Surya C , Agnel A J N , Pandiyan V , et al. Costus speciosus leaf extract assisted CS-Pt-TiO2 composites:Synthesis, characterization and their bio and photocatalytic applications[J]. Journal of Molecular Structure, 2019, 1195, 787- 795.
doi: 10.1016/j.molstruc.2019.06.030
|
24 |
欧阳琴, 江卓, 昝菱. TiO2单晶面负载贵金属Ag形貌及其催化活性[J]. 精细化工, 2016, 33 (9): 984- 990.
URL
|
25 |
Li Songtao , Li Gen , Chen Qiang , et al. Facile green synthesis of degraded-PVA coated TiO2 nanoparticles with enhanced photocatalytic activity under visible light[J]. Journal of Physics and Chemistry of Solids, 2019, 129, 92- 98.
doi: 10.1016/j.jpcs.2019.01.002
|
26 |
Yang L , Yu Y , Zhang J , et al. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis[J]. Applied Surface Science, 2018, 434, 796- 805.
doi: 10.1016/j.apsusc.2017.10.176
|
27 |
Mohamad F , Suriati S , Hameed B , et al. Epigrammatic progress and perspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology:A review[J]. Journal of Molecular Liquids, 2018, 268, 438- 459.
doi: 10.1016/j.molliq.2018.07.051
|
28 |
Zhang G , Chen D , Li N , et al. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2019, 250, 313- 324.
doi: 10.1016/j.apcatb.2019.03.055
|
29 |
Wang T , Liu X , Men Q , et al. Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi4Ti3O12 nanosheets[J]. Chinese Journal of Catalysis, 2019, 40 (6): 886- 894.
doi: 10.1016/S1872-2067(19)63330-9
|
30 |
Wang G , Cheng D , He T. , et al. Enhanced visible light responsivephotocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation[J]. Journal of Materials Science, 2019, 30 (11): 10923- 10933.
URL
|
31 |
Li Y , Zhao Y , Wu G , et al. Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis[J]. Materials Research Bulletin, 2018, 101, 39- 47.
doi: 10.1016/j.materresbull.2017.12.041
|
32 |
Hu K , Chen C , Zhu Y , et al. Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide(rGO) and meso-tetra(4-carboxyphenyl) porphyrin(TCPP) for enhanced visible-light photocatalysis[J]. Journal of Colloid And Interface Science, 2019, 540, 115- 125.
doi: 10.1016/j.jcis.2019.01.013
|
33 |
Wang Jie , Hao Xiaoyun , Jiang Youxiang , et al. Synthesis, structure, and photocatalytic activity of PANI/BiOCl nanocomposites[J]. Materials Research Express, 2019, 6 (8): 0850C1.
doi: 10.1088/2053-1591/ab1fa5
|
34 |
Xu Y , Ma Y , ji X , et al. Conjugated conducting polymers PANI decorated Bi12O17Cl2 photocatalyst with extended light response range and enhanced photoactivity[J]. Applied Surface Science, 2018, 434, 796- 805.
doi: 10.1016/j.apsusc.2017.10.176
|
35 |
高生旺, 郭昌胜, 吕佳佩, 等. 磁性BiOI/Fe3O4的合成及光催化降解水中的双酚S[J]. 环境工程学报, 2016, 10 (11): 6349- 6356.
doi: 10.12030/j.cjee.201605012
|
36 |
李小娟, 汤端莲, 汤帆, 等. Bi2WO6-NiFe2O4磁性可见光催化剂的制备及其性能研究[J]. 功能材料, 2015, 46 (9): 9106- 9110.
URL
|
37 |
Dong F , Xiong T , Sun Y , et al. A semimetal bismuth element as a direct plasmonic photocatalyst[J]. Chemical Communications, 2014, 50 (72): 10386- 10389.
doi: 10.1039/C4CC02724H
|
38 |
Zhang X , Yu S , Liu Y , et al. Photoreduction of non-noble metal Bi on the surface of Bi2WO6 for enhanced visible light photocatalysis[J]. Applied Surface Science, 2017, 396, 652- 658.
doi: 10.1016/j.apsusc.2016.11.002
|
39 |
Wu W , Zhang J , Fan W , et al. Remedying defects in carbon nitride to improve both photooxidation and H2 generation efficiencies[J]. ACS Catalysis, 2016, 6 (5): 3365- 3371.
doi: 10.1021/acscatal.6b00879
|
40 |
Dong F , Wu L , Sun Y , et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21 (39): 15171- 15174.
doi: 10.1039/c1jm12844b
|
41 |
Kang M , Yu H , Li W , et al. Efficient Fe2O3/C-g-C3N4 Z-scheme heterojunction photocatalyst prepared by facile one-step carbonizing process[J]. Journal of Physics and Chemistry of Solids, 2019, 130, 93- 99.
doi: 10.1016/j.jpcs.2019.02.017
|
42 |
Liu W , Zhou J , Hu Z . Nano-sized g-C3N4 thin layer@CeO2 sphere core-shell photocatalyst combined with H2O2 to degrade doxycycline in water under visible light irradiation[J]. Separation and Purification Technology, 2019, 227, 115665.
doi: 10.1016/j.seppur.2019.06.003
|
43 |
Huang J , Li D , Li R , et al. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics[J]. Chemical Engineering Journal, 2019, 374, 242- 253.
doi: 10.1016/j.cej.2019.05.175
|
44 |
Wang D , Sun H , Luo Q , et al. An efficient visible-light photocatalyst prepared from g-C3N4 and polyvinyl chloride[J]. Applied Catalysis B:Environmental, 2014, 156/157, 323- 330.
doi: 10.1016/j.apcatb.2014.03.034
|
45 |
Han H , Fu M , Li Y , et al. In-situ polymerization for PPy/g-C3N4 composites with enhanced visible light photocatalytic performance[J]. Chinese Journal of Catalysis, 2018, 39, 831- 840.
doi: 10.1016/S1872-2067(17)62997-8
|
46 |
唐旭, 倪良, 韩娟, 等. 三元磁性氮化碳复合光催化剂的制备和表征及其在可见光下去除四环素的应用(英文)[J]. 催化学报, 2017, (3): 447- 457.
URL
|
47 |
Gebrehiwot G , Pankaj B , Umesh C , et al. Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts[J]. Journal of Photochemistry & Photobiology A:Chemistry, 2019, 382, 111960.
URL
|