1 |
Fulekar M , Singh A , Bhaduri A M . Genetic engineering strategies for enhancing phytoremediation of heavy metals[J]. African Journal of Biotechnology, 2009, 8 (4): 94- 99.
URL
|
2 |
陆海, 彭琼. 水体重金属污染现状及治理技术[J]. 当代化工研究, 2019, 37 (1): 27- 28.
URL
|
3 |
Yandan Li , Bi Erping , Chen Honghan . Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite[J]. Ecotoxicology and Environmental Safety, 2019, 178, 43- 50.
URL
|
4 |
Litvin V , Galagan R , Minaev B . Synthesis and properties of synthetic analogs of natural humic acids[J]. Russian Journal of Applied Chemistry, 2012, 85 (2): 296- 302.
URL
|
5 |
Kinniburgh D G , Milne C J , Benedetti M F , et al. Metal ion binding by humic acid:application of the NICA-Donnan model[J]. Environmental Science & Technology, 1996, 30 (5): 1687- 1698.
URL
|
6 |
Xu Piao , Zeng Guangming , Dan Lianhuang , et al. Use of iron oxide nanomaterials in wastewater treatment:a review[J]. Science of the Total Environment, 2012, 424, 1- 10.
URL
|
7 |
艾翠玲, 雷英杰, 张国春, 等. 纳米铁氧化物吸附处理重金属废水的研究进展[J]. 化工环保, 2015, 35 (6): 593- 598.
URL
|
8 |
Adhikari D , Poulson S R , Sumaila S , et al. Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes[J]. Chemical Geology, 2016, 430, 13- 20.
URL
|
9 |
Schwertmann U . Iron in soils and clay minerals[M]. Germany: Springer, 1988: 267- 308.
|
10 |
Xu Piao , Zeng Guangming , Dan Lianhuang , et al. Water-soluble iron oxide nanoparticles with high stability and selective surface functionality[J]. Langmuir, 2011, 27 (14): 8990- 8997.
URL
|
11 |
Jakubec P , Malina O , Tucek J , et al. Crystal structure- and morphology-driven electrochemistry of iron oxide nanoparticles in hydrogen peroxide detection[J]. Advanced Materials Interfaces, 2019, 6 (3): 1801549.
URL
|
12 |
Parsons J , Luna C , Botez C , et al. Microwave-assisted synthesis of iron(Ⅲ) oxyhydroxides/ǒxides characterized using transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy[J]. Journal of Physics and Chemistry of Solids, 2009, 70 (3/4): 555- 560.
URL
|
13 |
Kurbatov G , Darque-Ceretti E , Aucouturier M . Characterization of hydroxylated oxide film on iron surfaces and its acid-base properties using XPS[J]. Surface and Interface Analysis, 1992, 18 (12): 811- 820.
URL
|
14 |
丁昌璞. 中国土壤电化学的发展历程[J]. 土壤, 2013, 45 (5): 780- 784.
URL
|
15 |
管宇立.水铁矿及其与腐植酸共沉物对水溶液中镉的吸附作用研究[D].兰州:兰州大学, 2018.
URL
|
16 |
Zaloga J , Janko C , Agarwal R , et al. Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles[J]. International Journal of Molecular Sciences, 2015, 16 (5): 9368- 9384.
URL
|
17 |
刘文莉, 孙伟, 熊辉. 针铁矿对垃圾焚烧飞灰中重金属离子的固化作用及机理分析[J]. 矿产保护与利用, 2018, 218 (6): 93- 99.
URL
|
18 |
王帅, 李翠兰, 王楠, 等. 介质离子强度对Cu2+在针铁矿和δ-MnO2表面吸附影响的红外光谱[J]. 吉林大学学报(理学版), 2011, 49 (2): 353- 357.
URL
|
19 |
周代华, 李学垣, 徐凤琳. Cu2+在针铁矿表面吸附的红外光谱研究[J]. 华中农业大学学报, 1996, 15 (2): 153- 156.
URL
|
20 |
庞禄.铁锰复合氧化物对重金属铬(Ⅲ)、砷(Ⅲ)吸附/氧化特征研究[D].重庆:西南大学, 2014.
URL
|
21 |
李仲谨, 李铭杰, 王海峰, 等. 腐植酸类物质应用研究进展[J]. 化学研究, 2009, 20 (4): 103- 107.
URL
|
22 |
Park C M , Han J , Chu K H , et al. Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar:experiment and modeling[J]. Journal of Industrial and Engineering Chemistry, 2017, 48, 186- 193.
URL
|
23 |
Ong K J , Felix L C , Boyle D , et al. Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish[J]. Environmental Science:Nano, 2017, 4 (1): 127- 137.
URL
|
24 |
Lu Songhua , Zhu Kairuo , Guo Han , et al. The influence of humic acid on U(Ⅵ) sequestration by calcium titanate[J]. Chemical Engineering Journal, 2019, 368, 598- 605.
URL
|
25 |
程亮, 侯翠红, 徐丽, 等. 纳米腐殖酸动态吸附废水中镉离子及其洗脱特性[J]. 化工学报, 2016, 67 (4): 1348- 1356.
URL
|
26 |
胡立芳, 龙於洋, 沈东升, 等. 腐殖酸及钙盐对危险废物焚烧残渣中Cu的协同稳定化作用[J]. 科技通报, 2016, 32 (2): 209- 213.
URL
|
27 |
蒋海燕, 周书葵, 曾光明, 等. 不溶性腐殖酸对U(Ⅵ)的吸附动力学和吸附热力学[J]. 安全与环境学报, 2015, 15 (1): 193- 198.
URL
|
28 |
王维, 赵丽媛. 掺杂生物膜组分对黄河乌海段表层沉积物吸附Cd2+的影响研究[J]. 环境研究与监测, 2014, 26 (1): 17- 21.
URL
|
29 |
Xiong Juan , Weng Liping , Luuk K , et al. Effect of soil fulvic and humic acids on Pb binding to the goethite/solution interface:ligand charge distribution modeling and speciation distribution of Pb[J]. Environmental Science & Technology, 2018, 52, 1348- 1356.
URL
|
30 |
Zhang Yanqing , Li Meng , Wu Si , et al. Research on hydrophilicity and hydrophobicity of adsorption of NOM on metal oxide/water interface[J]. Desalination and Water Treatment, 2014, 57 (5): 1940- 1948.
URL
|
31 |
Sander S , Mosley L M , Hunter K A . Investigation of interparticle forces in natural waters:Effects of adsorbed humic acids on iron oxide and alumina surface properties[J]. Environmental Science & Technology, 2004, 38 (18): 4791- 4796.
URL
|
32 |
Wang Hui , Zhu Jun , Fu Qingling , et al. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes[J]. Pedosphere, 2015, 25 (3): 405- 414.
URL
|
33 |
Bian S W , Mudunkotuwa I A , Rupasinghe T , et al. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:influence of pH, ionic strength, size, and adsorption of humic acid[J]. Langmuir, 2011, 27 (10): 6059- 6068.
URL
|
34 |
Arnarson T S , Keil R G . Mechanisms of pore water organic matter adsorption to montmorillonite[J]. Marine Chemistry, 2000, 71 (3/4): 309- 320.
URL
|
35 |
Illés E , Tombácz E . The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid and Interface Science, 2006, 295 (1): 115- 123.
URL
|
36 |
谢水波, 冯敏, 杨金辉, 等. 腐殖酸改性针铁矿对铀U(Ⅵ)的吸附性能及机理研究[J]. 环境科学学报, 2014, 34 (9): 2271- 2278.
URL
|
37 |
罗文倩, 魏世强. 镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J]. 农业环境科学学报, 2009, 28 (5): 897- 902.
URL
|
38 |
肖萍.胡敏酸作用下针铁矿对重金属铅环境行为的影响[D].重庆:西南大学, 2009.
URL
|
39 |
王丹丽, 王恩德. 针铁矿及腐殖质对水体重金属离子的吸附作用[J]. 安全与环境学报, 2001, 1 (4): 1- 4.
URL
|
40 |
马健伟, 任淑鹏, 宋亚瑞, 等. 零价铁技术在废水处理领域的应用研究进展[J]. 化学通报, 2019, 82 (1): 3- 11.
URL
|