1 |
干方群, 周健民, 王火焰, 等. 不同浓度酸改性对凹凸棒石黏土磷吸附性能的影响[J]. 土壤学报, 2010, 47 (2): 319- 324.
URL
|
2 |
张建民, 周磊, 刘玉涛, 等. 凹凸棒石的碱酸改性及除磷效果探究[J]. 西安工程大学学报, 2013, 27 (6): 760- 763.
doi: 10.3969/j.issn.1674-649X.2013.06.012
|
3 |
孙楠. 改性凹凸棒土处理低温高色高氨氮水源水研究[D]. 黑龙江: 哈尔滨工业大学, 2013.
|
4 |
Yin Hongbin , Han Meixiang , Tang Wanying . Phosphorus sorption and supply from eutrophic lake sediment amended with thermally-treated calcium-rich attapulgite and a safety evaluation[J]. Chemical Engineering Journal, 2016, 285, 671- 678.
doi: 10.1016/j.cej.2015.10.038
|
5 |
Li Feihu , Wu Wenhao , Li Renying , et al. Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: Experimental and modeling[J]. Applied Clay Science, 2016, 132/133, 343- 352.
doi: 10.1016/j.clay.2016.06.028
|
6 |
任智丰. 凹凸棒土处理磷肥厂混合废水[D]. 贵州: 贵州大学, 2009.
|
7 |
鲍祥, 张艳, 贺学周, 等. 改性凹凸棒土负载铝盐吸附剂去除水中总磷研究[J]. 安徽农学通报, 2016, 22 (19): 28- 31.
URL
|
8 |
苗琛琛. 镧改性凹凸棒土对模拟富营养化水体中磷的去除研究[D]. 南京: 南京大学, 2016.
|
9 |
寇明月, 刘文静, 傅玲子, 等. 典型矿物材料对水中磷吸附性能的对比研究[J]. 当代化工, 2020, 49 (7): 1347- 1355.
doi: 10.3969/j.issn.1671-0460.2020.07.022
|
10 |
朱宏伟, 于涛, 魏东洋, 等. 浸渍-煅烧法改性凹凸棒石对模拟废水中磷的吸附特性[J]. 环境科学研究, 2018, 31 (4): 765- 773.
URL
|
11 |
谢晶晶, 邢波波, 陈天虎, 等. 不同矿石类型凹凸棒石黏土热处理后对磷的吸附性能[J]. 硅酸盐学报, 2014, 42 (5): 683- 687.
URL
|
12 |
Yin Hongbin , Yan Xiaowei , Gu Xiaohong . Evaluation of thermallymodified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands[J]. Water Research, 2017, 115, 329- 338.
doi: 10.1016/j.watres.2017.03.014
|
13 |
Frost R L , Locos O B , Ruan H , et al. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites[J]. Vibrational Spectroscopy, 2001, 27 (1): 1- 13.
doi: 10.1016/S0924-2031(01)00110-2
|
14 |
Ogorodova L , Vigasina M , Melchakova L , et al. Thermochemical study of natural magnesium aluminum phyllosilicate: Palygorskite[J]. The Journal of Chemical Thermodynamics, 2015, 89, 205- 211.
doi: 10.1016/j.jct.2015.05.023
|
15 |
Gunasekaran S , Anbalagan G , Pandi S . Raman and infrared spectra of carbonates of calcite structure[J]. Journal of Raman Spectroscopy, 2006, 37 (9): 892- 899.
doi: 10.1002/jrs.1518
|
16 |
Rusmin R , Sarkar B , Biswas B , et al. Structural, electrokinetic and surface properties of activated palygorskite for environmental application[J]. Applied Clay Science, 2016, 134 (2): 95- 102.
URL
|
17 |
Suárez M , García-Romero E . FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet[J]. Applied Clay Science, 2006, 31 (1/2): 154- 163.
URL
|
18 |
Yan Wenchang , Liu Dong , Tan Daoyong , et al. FTIR spectroscopy study of the structure changes of palygorskite under heating[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97, 1052- 1057.
doi: 10.1016/j.saa.2012.07.085
|
19 |
Ye Hengpeng , Chen Fanzhong , Sheng Yanqing , et al. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Separation and Purification Technology, 2006, 50 (3): 283- 290.
doi: 10.1016/j.seppur.2005.12.004
|
20 |
姚俊琪, 商卫纯, 李梦洁, 等. 改性凹凸棒土吸附剂的制备及其在含磷废水处理中的应用[J]. 环境科技, 2018, 31 (5): 35- 40.
URL
|
21 |
王家宏, 曹瑞华, 郭茹. 聚合氯化铝与凹凸棒土复配改性吸附水体中磷[J]. 水处理技术, 2019, 45 (6): 66- 69.
URL
|
22 |
Zhang Jianda , Shen Zhemin , Shan Wenpo , et al. Adsorption behavior of phosphate on lanthanum(Ⅲ)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material[J]. Journal of Hazardous Materials, 2011, 186 (1): 76- 83.
doi: 10.1016/j.jhazmat.2010.10.076
|
23 |
Claveau-Mallet D , Wallace S , Comeau Y . Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters[J]. Environmental Science & Technology, 2012, 46 (3): 1465- 1470.
URL
|
24 |
孙莹, 张荣斌, 王学江, 等. 镁盐改性凹凸棒土对污水中氮磷的回收[J]. 水处理技术, 2020, 46 (3): 16- 21.
URL
|
25 |
Liu Yun , Sheng Xia , Dong Yuanhua , et al. Removal of high-concentration phosphate by calcite: Effect of sulfate and pH[J]. Desalination, 2012, 289, 66- 71.
URL
|