1 |
LI Ruohong, LI Bing, LI Xiaoyan. An integrated membrane bioreactor system with iron⁃dosing and side⁃stream co⁃fermentation for enhanced nutrient removal and recovery:System performance and microbial community analysis[J]. Bioresource Technology, 2018, 260:248-255. doi: 10.1016/j.biortech.2018.03.100
|
2 |
KUGLER K, OHS B, SCHOLZ M,et al. Towards a carbon independent and CO 2-free electrochemical membrane process for NH 3 synthesis[J]. Physical Chemistry Chemical Physics, 2014, 16(13):6129-6138. doi: 10.1039/c4cp00173g
|
3 |
STRAND M C, GJERDE H, MØRLAND J. Driving under the influence of non⁃alcohol drugs[J]. Forensic Science Review,2016,28(2):79-101.
|
4 |
FOLEY J, DE HAAS D, HARTLEY K,et al. Comprehensive life cycle inventories of alternative wastewater treatment systems[J]. Water Research, 2010, 44(5):1654-1666. doi: 10.1016/j.watres.2009.11.031
|
5 |
LEDEZMA P, KUNTKE P, BUISMAN C J,et al. Source⁃separated urine opens golden opportunities for microbial electrochemical technologies[J]. Trends. Biotechnol., 2015, 33(4):214-220. doi: 10.1016/j.tibtech.2015.01.007
|
6 |
CAI Ting, PARK S Y, LI Yebo. Nutrient recovery from wastewater streams by microalgae:Status and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 19:360-369. doi: 10.1016/j.rser.2012.11.030
|
7 |
DIPAK A J, SREEMOYEE G R, MAKARAND M G. Third generation in bio⁃electrochemical system research-A systematic review on mechanisms for recovery of valuable by⁃products from wastewater.Microbial electrosynthesis⁃revisiting the electrical route for microbial production[J]. Renewable and Sustainable Energy Reviews,2017,76:1022-1031.
|
8 |
LOGAN B E. Microbial fuel cells:Methodology and technology[J]. Environmental Science and Technology, 2006, 40(17):5181-5192. doi: 10.1021/es0605016
|
9 |
LOGAN B E, CALL D, CHENG SHAOAN,et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science and Technology, 2008, 42(23):8630-8640. doi: 10.1021/es801553z
|
10 |
WANG Heming, REN Zhiyong. A comprehensive review of microbial electrochemical systems as a platform technology[J]. Biotechnology Advances, 2013, 31(8):1796-1807. doi: 10.1016/j.biotechadv.2013.10.001
|
11 |
RABAEY K, ROZENDAL R A, DUTTA P K,et al. Microbial electrosynthesis⁃revisiting the electrical route for microbial produc⁃tion[J]. Nature Reviews Microbiology, 2010, 8(10):706-716. doi: 10.1038/nrmicro2422
|
12 |
KELLY P T, HE Zhen. Nutrients removal and recovery in bioelectrochemical systems:A review[J]. Bioresource Technology, 2014, 153:351-360. doi: 10.1016/j.biortech.2013.12.046
|
13 |
COLOMBO A, MARZORATI S, LUCCHINI G,et al. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater[J]. Bioresource Technology, 2017, 237:240-248. doi: 10.1016/j.biortech.2017.03.038
|
14 |
QIN Mohan, HE Zhen. Resource recovery by osmotic bioelectrochemical systems towards sustainable wastewater treatment[J]. Environmental Science:Water Research and Technology, 2017, 3(4):583-592. doi: 10.1039/C7EW00110J
|
15 |
LIU Ying, QIN Mohan, LUO Shuai,et al. Understanding ammonium transport in bioelectrochemical systems towards sustainable its recovery[J]. Scientific Reports, 2016, 6(1):22547-22557. doi: 10.1038/srep22547
|
16 |
KIM J R, ZUO Yi, REGAN J M,et al. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater[J]. Biotechnology and Bioengineering, 2008, 99(5):1120-1127. doi: 10.1002/bit.21687
|
17 |
CORD⁃RUWISCH R, LAW Y, CHENG Kayu. Ammonium as a sustainable proton shuttle in bioelectrochemical systems[J]. Bioresource Technology, 2011, 102(20):9691-9696. doi: 10.1016/j.biortech.2011.07.100
|
18 |
CHENG Kayu, KAKSONEN A H, CORD⁃RUWISCH R. Ammonia recycling enables sustainable operation of bioelectrochemical systems[J]. Bioresource Technology, 2013, 143:25-31. doi: 10.1016/j.biortech.2013.05.108
|
19 |
KUNTKE P, SMIECH K M, BRUNING H,et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8):2627-2636. doi: 10.1016/j.watres.2012.02.025
|
20 |
KUNTKE P, GELEJI M, BRUNING H,et al. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(6):4376-4382. doi: 10.1016/j.biortech.2010.12.085
|
21 |
PRADHAN S K, MIKOLA A, HEINONEN⁃TANSKI H,et al. Nitrogen and phosphorush harvesting from human urine using a stripping absorption and precipitation process[J]. Enviromental Science and technology, 2017, 51(9):5165-5171. doi: 10.1021/acs.est.6b05402
|
22 |
GILDEMYN S, LUTHER A K, ANDERSEN S J,et al. Electrochemically and bioelectrochemically induced ammonium recove⁃ry[J]. Journal of Visualized Experiments, 2015, 95:3791-3803. doi: 10.3791/52405
|
23 |
ZHANG Yifeng, ANGELIDAKI I. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammo⁃nia[J]. Bioresource Technology, 2015, 177:233-239. doi: 10.1016/j.biortech.2014.11.079
|
24 |
ZHANG Yifeng, ANGELIDAKI I. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell[J]. Biotechnology and Bioengineering, 2015, 112:1478-1482. doi: 10.1002/bit.25549
|
25 |
SOTRES A, CERRILLO M, VINAS M,et al. Nitrogen recovery from pig slurry in a two⁃chambered bioelectrochemical system[J]. Bioresource Technology, 2015, 194:373-382. doi: 10.1016/j.biortech.2015.07.036
|
26 |
ZHANG Yifeng, ANGELIDAKI I. Recovery of ammonia and sulfate from waste streams and bioenergy prodcution via bipolar bioelectrodialysis[J]. Water Research, 2015, 85:177-184. doi: 10.1016/j.watres.2015.08.032
|
27 |
KUNTKE P, ZAMORA P, SAAKES M,et al. Gas⁃permeable hydrophobic tubular membranes for ammonia recovery in bio⁃electrochemical systems[J]. Water Research and Technology, 2016, 2(2):261-265. doi: 10.1039/c5ew00299k
|
28 |
ZAMORA P, GEORGIEVA T,TER H A,et al. Ammonia recovery from urine in a scaled⁃up microbial electrolysis cell[J]. Journal of Power Sources, 2017, 356:491-499. doi: 10.1016/j.jpowsour.2017.02.089
|
29 |
QIN Mohan, HE Zhen. Recovering ammonium bicarbonate to achieve wastewater treatment and reuse in a microbial electrolysis cell⁃forward osmosis⁃coupled system[J]. Environmental Science and Technology Letters, 2014, 10:437-441. doi: 10.2175/193864715819558514
|
30 |
QIN Mohan, MOLITOR H, BRAZIL B,et al. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell⁃forward osmosis system[J]. Bioresource Technology, 2016, 200:485-492. doi: 10.1016/j.biortech.2015.10.066
|
31 |
ZOU Shiqiang, KANIMBA E, DILLER T E,et al. Modeling assisted evaluation of direct electricity generation from waste heat of wastewater via a thermoelectric generator[J]. Science of the Total Environment, 2018, 635:1215-1224. doi: 10.1016/j.scitotenv.2018.04.201
|
32 |
QIN Mohan, HYNES E A, ABUREESH I M,et al. Ammonium removal from synthetic wastewater promoted by current generation and water flux in an osmotic microbial fuel cell[J]. Journal of Cleaner Production, 2017, 149:856-862. doi: 10.1016/j.jclepro.2017.02.169
|
33 |
KUNTKE P, SLEUTELS T H J A, SAAKES M,et al. Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2014, 39(10):4771-4778. doi: 10.1016/j.ijhydene.2013.10.089
|
34 |
WU Xue, MODIN O. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor[J]. Bioresource Technology, 2013, 146:530-536. doi: 10.1016/j.biortech.2013.07.130
|
35 |
LEDEZMA P, JERMAKKA J, KELLER J,et al. Recovering nitrogen as a solid without chemicaldosing:Bio⁃electroconcentration for recovery of nutrients from urine[J]. Environmental Science and Technology Letters, 2017, 4(3):119-124. doi: 10.1021/acs.estlett.7b00024
|
36 |
ZHANG Fei, LI Jian, HE Zhen. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system[J]. Bioresource Technology, 2014, 166:630-634. doi: 10.1016/j.biortech.2014.05.105
|
37 |
|
38 |
KIM T, AN J,JAE K J,et al. Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery[J]. Bioresource Technology, 2015, 195:217-222. doi: 10.1016/j.biortech.2015.06.009
|
39 |
RONTELTAP M, MAURER M, GUJER W. Struvite precipitation thermodynamics in source⁃separated urine[J]. Water Research, 2007, 41(5):977-984. doi: 10.1016/j.watres.2006.11.046
|
40 |
YENIGÜN O, DEMIREL B. Ammonia inhibition in anaerobic digestion:A review[J]. Process Biochemistry, 2013, 48(5/6):901-911. doi: 10.1016/j.procbio.2013.04.012
|
41 |
WANG Luguang, XIE Beizhen, GAO Ningshengjie,et al. Urea removal coupled with enhanced electricity generation in single⁃chambered microbial fuel cells[J]. Environmental Science and Pollution Research, 2017, 24(25):20401-20408. doi: 10.1007/s11356-017-9689-7
|
42 |
MAHMOUD M, PARAMESWARAN P, TORRES C I,et al. Electrochemical techniques reveal that total ammonium stress increases electron flow to anode respiration in mixed⁃species bacterial anode biofilms[J]. Biotechnology and Bioengineering, 2017, 114(6):1151-1159. doi: 10.1002/bit.26246
|
43 |
QIN Mohan, LIU Ying, LUO Shuai,et al. Integrated experimental and modeling evaluation of energy consumption for ammonia recovery in bioelectrochemical systems[J]. Chemical Engineering Journal, 2017, 327:924-931. doi: 10.1016/j.cej.2017.06.182
|
44 |
JAN W E, MARK A S, JAMES G, al at. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10):636-639. doi: 10.1038/ngeo325
|
45 |
WANG L K, SHAMMAS N K, HUNG Y T. Advanced biological treatment processes[M]. USA:Humana Press,2010:185-207.
|
46 |
HOU Dianxun, IDDYA A, CHEN Xi,et al. Nickel⁃based membrane electrodes enable high⁃rate electrochemical ammonia recovery[J]. Environmental Science and Technology, 2018, 52(15):8930-8938. doi: 10.1021/acs.est.8b01349
|
47 |
HARTMAN M, TRNKA O, POHORELÝ M. Oxidation of organic nitrogen in stoichiometric and balance calculations of the combustion of stabilized sewage sludge[J]. Chemicke Listy,2007,101(4):310-314.
|
48 |
SHEN Ye, HE Chao, CHEN Xiaoping,et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science and Technology, 2015, 49(11):6872-6880. doi: 10.1021/acs.est.5b00652
|