1 |
BOLONG N, ISMAIL A F, SALIM M R,et al .A review of the effects of emerging contaminants in wastewater and options for their removal[J]. Desalination, 2009, 239(1/2/3):229-246. doi: 10.1016/j.desal.2008.03.020
|
2 |
LIU Hong, MA Chuanxin, CHEN Guangcai,et al. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L. )[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4):3204-3213. doi: 10.1021/acssuschemeng.6b02976
|
3 |
NIKOLAOU A, MERIC S, FATTA D. Occurrence patterns of pharmaceuticals in water and wastewater environments[J]. Analytical and Bioanalytical Chemistry, 2007, 387(4):1225-1234. doi: 10.1007/s00216-006-1035-8
|
4 |
MINALE M, GU Zaoli, GUADIE A,et al. Application of graphene⁃based materials for removal of tetracyclines using adsorption and photocatalytic⁃degradation:A review[J]. Journal of Environmental Management, 2020, 276:111310. doi: 10.1016/j.jenvman.2020.111310
|
5 |
NIU Jinfen, WANG Kai, MA Z,et al. Application of g-C 3N 4 matrix composites photocatalytic performance from degradation of antibiotics[J]. Chemistry Select, 2020, 5(40):12353-12364. doi: 10.1002/slct.202003407
|
6 |
WEI Lianxue, LI Haixiao, LU Jinfeng. Algae⁃induced photodegradation of antibiotics:A review[J]. Environmental Pollution, 2021, 272:115589. doi: 10.1016/j.envpol.2020.115589
|
7 |
SHAO Sicheng, WU Xiangwei. Microbial degradation of tetracycline in the aquatic environment:A review[J]. Critical Reviews in Biotechnology, 2020, 40(7):1010-1018. doi: 10.1080/07388551.2020.1805585
|
8 |
|
|
LIU Yun, DONG Yuanhua, HANG Xiaoshuai,et al. Advances in application of environmental mineral materials in soil environment remediation[J]. Acta Pedologica Sinica, 2011, 48(3):629-638. doi: 10.11766/trxb201001290043
|
9 |
ZHANG Yan, LI Aolin, DAI Tianjiao,et al. Cell⁃free DNA:A neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 2018, 52(1):248-257. doi: 10.1021/acs.est.7b04283
|
10 |
PRUDEN A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance[J]. Environmental Science & Technology, 2014, 48(1):5-14. doi: 10.1021/es403883p
|
11 |
CHEN Yongshan, XI Xiuping, XU Jinghua,et al. Distribution patterns of antibiotic residues in an urban river catchment[J]. Water and Environment Journal, 2019, 33(1):31-39. doi: 10.1111/wej.12366
|
12 |
JHA R R, SINGH N, KUMARI R,et al. Ultrasound⁃assisted emulsification microextraction based on a solidified floating organic droplet for the rapid determination of 19 antibiotics as environmental pollutants in hospital drainage and Gomti River water[J]. Journal of Separation Science, 2017, 40(13):2694-2702. doi: 10.1002/jssc.201700170
|
13 |
HAN Ying, WANG Jing, ZHAO Zelong,et al. Fishmeal application induces antibiotic resistance gene propagation in mariculture sediment[J]. Environmental Science & Technology, 2017, 51(18):10850-10860. doi: 10.1021/acs.est.7b02875
|
14 |
LIU Sisi, ZHAO Hongxia, LEHMLER H J,et al. Antibiotic pollution in marine food webs in Laizhou Bay,North China:Trophodynamics and human exposure implication[J]. Environmental Science & Technology, 2017, 51(4):2392-2400. doi: 10.1021/acs.est.6b04556
|
15 |
LI Xunde, ATWILL E R, ANTAKI E,et al. Fecal indicator and pathogenic bacteria and their antibiotic resistance in alluvial groundwater of an irrigated agricultural region with dairies[J]. Journal of Environmental Quality, 2015, 44(5):1435-1447. doi: 10.2134/jeq2015.03.0139
|
16 |
ROEHRDANZ P R, FERAUD M, LEE D G,et al. Spatial models of sewer pipe leakage predict the occurrence of wastewater indicators in shallow urban groundwater[J]. Environmental Science & Technology, 2017, 51(3):1213-1223. doi: 10.1021/acs.est.6b05015
|
17 |
AVISAR D, LEVIN G, GOZLAN I. The processes affecting oxytetracycline contamination of groundwater in a phreatic aquifer underlying industrial fish ponds in Israel[J]. Environmental Earth Sciences, 2009, 59(4):939-945. doi: 10.1007/s12665-009-0088-3
|
18 |
LI Xiaohua, LIU Chong, CHEN Yongxing,et al. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China[J]. Environmental Science and Pollution Research International, 2018, 25(12):11565-11575. doi: 10.1007/s11356-018-1339-1
|
19 |
WU Qingfeng, LI Zhaohui, HONG Hanlie. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite[J]. Applied Clay Science, 2013, 74:66-73. doi: 10.1016/j.clay.2012.09.026
|
20 |
YANG Shanshan, HUANG Zhiyan, LI Chunquan,et al. Individual and simultaneous adsorption of tetracycline and cadmium by dodecyl dimethyl betaine modified vermiculite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 602:125171. doi: 10.1016/j.colsurfa.2020.125171
|
21 |
AWAD A M, SHAIKH S M R, JALAB R,et al. Adsorption of organic pollutants by natural and modified clays:A comprehensive review[J]. Separation and Purification Technology, 2019, 228:115719. doi: 10.1016/j.seppur.2019.115719
|
22 |
LIU Guangfei, ZHANG Yuanyuan, YU Huali,et al. Acceleration of goethite⁃catalyzed Fenton⁃like oxidation of ofloxacin by biochar[J]. Journal of Hazardous Materials, 2020, 397:122783. doi: 10.1016/j.jhazmat.2020.122783
|
23 |
CHENG Wei, KALAHROODI E L, MARSAC R,et al. Adsorption of quinolone antibiotics to goethite under seawater conditions:Application of a surface complexation model[J]. Environmental Science & Technology, 2019, 53(3):1130-1138. doi: 10.1021/acs.est.8b04853
|
24 |
ROCHA M C DA, DE ARAUJO BRAZ E M, HONÓRIO L M C,et al. Understanding the effect of UV light in systems containing clay minerals and tetracycline[J]. Applied Clay Science, 2019, 183:105311. doi: 10.1016/j.clay.2019.105311
|
25 |
|
|
FAN Jieming, WANG Jiquan. Research progress on g-C 3N 4/clay composite photocatalytic materials for degradation of pollutants[J]. The World of Building Materials, 2019, 40(3):1-5. doi: 10.3963/j.issn.1674-6066.2019.03.001
|
26 |
ZHAO Yanping, GU Xueyuan, GAO Shixiang,et al. Adsorption of tetracycline (TC) onto montmorillonite:Cations and humic acid effects[J]. Geoderma, 2012, 183/184:12-18. doi: 10.1016/j.geoderma.2012.03.004
|
27 |
TOKARČÍKOVÁ M, BARDOŇOVÁ L, SEIDLEROVÁ J,et al. Magnetically modified montmorillonite - characterisation,sorption properties and stability[J]. Materials Today:Proceedings, 2021, 37:48-52. doi: 10.1016/j.matpr.2020.08.721
|
28 |
ARISTILDE L, LANSON B, CHARLET L. Interstratification patterns from the pH⁃dependent intercalation of a tetracycline antibiotic within montmorillonite layers[J]. Langmuir, 2013, 29(14):4492-4501. doi: 10.1021/la400598x
|
29 |
WANG C J, LI Zhaohui, JIANG W T,et al. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):309-314. doi: 10.1016/j.jhazmat.2010.07.025
|
30 |
DE OLIVEIRA T, FERNANDEZ E, FOUGÈRE L,et al. Competitive association of antibiotics with a clay mineral and organoclay derivatives as a control of their lifetimes in the environment[J]. ACS Omega, 2018, 3(11):15332-15342. doi: 10.1021/acsomega.8b02049
|
31 |
SAITOH T, SHIBAYAMA T. Removal and degradation of β⁃lactam antibiotics in water using didodecyldimethylammonium bromide⁃modified montmorillonite organoclay[J]. Journal of Hazardous Materials, 2016, 317:677-685. doi: 10.1016/j.jhazmat.2016.06.003
|
32 |
LIU Shuai, WU Pingxiao, YU Langfeng,et al. Preparation and characterization of organo⁃vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics[J]. Applied Clay Science, 2017, 137:160-167. doi: 10.1016/j.clay.2016.12.002
|
33 |
WANG Jie, GAO Manglai, DING Fan,et al. Organo⁃vermiculites modified by heating and gemini pyridinium surfactants:Preparation,characterization and sulfamethoxazole adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 546:143-152. doi: 10.1016/j.colsurfa.2018.03.014
|
34 |
CHANG P H, LI Zhaohui, JEAN J S,et al. Adsorption of tetracycline on 2:1 layered non⁃swelling clay mineral illite[J]. Applied Clay Science, 2012, 67/68:158-163. doi: 10.1016/j.clay.2011.11.004
|
35 |
WANG C J, LI Zhaohui, JIANG W T. Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals[J]. Applied Clay Science, 2011, 53(4):723-728. doi: 10.1016/j.clay.2011.06.014
|
36 |
RAMANAYAKA S, SARKAR B, COORAY A T,et al. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media[J]. Journal of Hazardous Materials, 2020, 384:121301. doi: 10.1016/j.jhazmat.2019.121301
|
37 |
DUAN Wenzhen, WANG Ningfen, XIAO Weilong,et al. Ciprofloxacin adsorption onto different micro⁃structured tourmaline,halloysite and biotite[J]. Journal of Molecular Liquids, 2018, 269:874-881. doi: 10.1016/j.molliq.2018.08.051
|
38 |
STURINI M, SPELTINI A, MARASCHI F,et al. Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo⁃induced regeneration[J]. Chemosphere, 2016, 150:686-693. doi: 10.1016/j.chemosphere.2015.12.127
|
39 |
WU Jiayan, WANG Yanhua, WU Zixuan,et al. Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions[J]. Science of the Total Environment, 2020, 708:134409. doi: 10.1016/j.scitotenv.2019.134409
|
40 |
CUEVAS J, DIROCIE N, YUNTA F,et al. Evaluation of the sorption potential of mineral materials using tetracycline as a model pollutant[J]. Minerals, 2019, 9(7):453. doi: 10.3390/min9070453
|
41 |
TIAN Guangyan, WANG Wenbo, ZONG Li,et al. A functionalized hybrid silicate adsorbent derived from naturally abundant low⁃grade palygorskite clay for highly efficient removal of hazardous antibiotics[J]. Chemical Engineering Journal, 2016, 293:376-385. doi: 10.1016/j.cej.2016.02.035
|
42 |
秦小宁. 改性凹凸棒土和膨润土对水中四环素类抗生素的吸附去除研究[D]. 兰州:兰州交通大学,2020.
|
|
QIN Xiaoning. Adsorption removal of tetracycline antibiotics from aqueous solution by modified attapulgite and bentonite[D]. Lanzhou:Lanzhou Jiaotong University,2020.
|
43 |
WANG Wenbo, TIAN Guangyan, ZONG Li,et al. Mesoporous hybrid Zn⁃silicate derived from red palygorskite clay as a high⁃efficient adsorbent for antibiotics[J]. Microporous and Mesoporous Materials, 2016, 234:317-325. doi: 10.1016/j.micromeso.2016.07.029
|
44 |
|
|
CHEN Jing. Preparation of modified attapulgite and analysis on adsorption of oxytetracycline[D]. Xi’an:Xi’an University of Architecture and Technology, 2019. doi: 10.1007/s13726-019-00703-9
|
45 |
|
|
WANG Shanshan, ZHANG Yufeng, LUO Ping,et al. Adsorption of antibiotics in aqueous solution with modified attapulgite[J]. Water Purification Technology, 2017, 36(1):42-48. doi: 10.15890/j.cnki.jsjs.2017.01.008
|
46 |
BIZI M, BACHRA F E EL. Evaluation of the ciprofloxacin adsorption capacity of common industrial minerals and application to tap water treatment[J]. Powder Technology, 2020, 362:323-333. doi: 10.1016/j.powtec.2019.11.047
|
47 |
KHOSRAVI R, ZAREI A, HEIDARI M,et al. Application of ZnO and TiO 2 nanoparticles coated onto montmorillonite in the presence of H 2O 2 for efficient removal of cephalexin from aqueous solutions[J]. Korean Journal of Chemical Engineering, 2018, 35(4):1000-1008. doi: 10.1007/s11814-018-0005-0
|
48 |
KARPOV M, SEIWERT B, MORDEHAY V,et al. Transformation of oxytetracycline by redox⁃active Fe(Ⅲ)⁃and Mn(Ⅳ)⁃containing minerals:Processes and mechanisms[J]. Water Research, 2018, 145:136-145. doi: 10.1016/j.watres.2018.08.015
|
49 |
张娟. 磁性蒙脱石的制备及其对四环素与环丙沙星的吸附性能研究[D]. 南京:南京理工大学,2019.
|
|
ZHANG Juan. Preparation of magnetic montmorillonite and its adsorption properties for tetracycline and ciprofloxacin[D]. Nanjing:Nanjing University of Science and Technology,2019.
|
50 |
MEZNI M, SAIED T, HORRI N,et al. Removal of enrofloxacin from aqueous solutions using illite and synthetic zeolite X[J]. Surface Engineering and Applied Electrochemistry, 2017, 53(1):89-97. doi: 10.3103/s1068375516060107
|
51 |
|
|
LIU Shuai. The organic modification of vermiculite and its adsorption performance study on antibiotics and environmental hormones[D]. Guangzhou:South China University of Technology, 2017. doi: 10.1016/j.clay.2016.12.002
|
52 |
全瑶. 氧氟沙星在凹凸棒土上的吸附特征研究[D]. 北京:中国地质大学,2017.
|
|
QUAN Yao. Study on ofloxacin sorption characteristics to attapulgite[D]. Beijing:China University of Geosciences,2017.
|
53 |
CHUAICHAM C, PAWAR R R, KARTHIKEYAN S,et al. Fabrication and characterization of ternary sepiolite/g-C 3N 4/Pd composites for improvement of photocatalytic degradation of ciprofloxacin under visible light irradiation[J]. Journal of Colloid and Interface Science, 2020, 577:397-405. doi: 10.1016/j.jcis.2020.05.064
|
54 |
NAING H H, WANG Kai, LI Yuan,et al. Sepiolite supported BiVO 4 nanocomposites for efficient photocatalytic degradation of organic pollutants:Insight into the interface effect towards separation of photogenerated charges[J]. Science of the Total Environment, 2020, 722:137825. doi: 10.1016/j.scitotenv.2020.137825
|
55 |
ANASTOPOULOS I, MITTAL A, USMAN M,et al. A review on halloysite⁃based adsorbents to remove pollutants in water and wastewater[J]. Journal of Molecular Liquids, 2018, 269:855-868. doi: 10.1016/j.molliq.2018.08.104
|
56 |
ZHANG Ruilong, ZHOU Zhiping, XIE Atian,et al. Preparation of hierarchical porous carbons from sodium carboxymethyl cellulose via halloysite template strategy coupled with KOH⁃activation for efficient removal of chloramphenicol[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80:424-433. doi: 10.1016/j.jtice.2017.07.032
|
57 |
MA Yue, DAI Jiangdong, WANG Lulu,et al. Fabrication of porous molecularly imprinted polymer using halloysite nanotube as template for selective recognition and separation of chloramphenicol[J]. Journal of the Iranian Chemical Society, 2020, 17(3):555-565. doi: 10.1007/s13738-019-01792-2
|
58 |
PAPOULIS D. Halloysite based nanocomposites and photocatalysis:A review[J]. Applied Clay Science, 2019, 168:164-174. doi: 10.1016/j.clay.2018.11.009
|
59 |
|
|
ZHU Pengfei, DUAN Ming, WANG Pingping,et al. Visible light photocatalytic degradation of antibiotics by Ag 3PO 4/halloysite[J]. Non⁃Metallic Mines, 2020, 43(4):92-95. doi: 10.3969/j.issn.1000-8098.2020.04.026
|
60 |
YANG J H, LEE J H, RYU H J,et al. Drug⁃clay nanohybrids as sustained delivery systems[J]. Applied Clay Science, 2016, 130:20-32. doi: 10.1016/j.clay.2016.01.021
|
61 |
LI Xiangzhi, BI Erping. Different surface complexation patterns of gatifloxacin at typical iron mineral/water interfaces[J]. Environmental Earth Sciences, 2019, 78(21):630. doi: 10.1007/s12665-019-8641-1
|
62 |
WU Tingwen, XUE Qiang, LIU Fei,et al. Mechanistic insight into interactions between tetracycline and two iron oxide minerals with different crystal structures[J]. Chemical Engineering Journal, 2019, 366:577-586. doi: 10.1016/j.cej.2019.02.128
|
63 |
LIU Xiaocheng, ZHOU Yaoyu, ZHANG Jiachao,et al. Insight into electro⁃Fenton and photo⁃Fenton for the degradation of antibiotics:Mechanism study and research gaps[J]. Chemical Engineering Journal, 2018, 347:379-397. doi: 10.1016/j.cej.2018.04.142
|
64 |
BARHOUMI N, OLVERA⁃VARGAS H, OTURAN N,et al. Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro⁃Fenton process with solid catalyst chalcopyrite[J]. Applied Catalysis B:Environmental, 2017, 209:637-647. doi: 10.1016/j.apcatb.2017.03.034
|
65 |
DROGUETT C, SALAZAR R, BRILLAS E,et al. Treatment of antibiotic cephalexin by heterogeneous electrochemical Fenton⁃based processes using chalcopyrite as sustainable catalyst[J]. Science of the Total Environment, 2020, 740:140154. doi: 10.1016/j.scitotenv.2020.140154
|
66 |
THIAM A, SALAZAR R, BRILLAS E,et al. In⁃situ dosage of Fe 2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process[J]. Journal of Environmental Management, 2020, 270:110835. doi: 10.1016/j.jenvman.2020.110835
|
67 |
蒋芬芬,吴宏海. 针铁矿非均相Fenton法降解抗生素的特征及其动力学研究[J]. 矿物学报,2012,32(S1):144-145.
|
|
JIANG Fenfen, WU Honghai. Characterization of antibiotic degradation by non⁃homogeneous Fenton method of needle ferrite and its kinetics[J]. Acta Mineralogica Sinica,2012,32(S1):144-145.
|
68 |
BARHOUMI N, OTURAN N, OLVERA⁃VARGAS H,et al. Pyrite as a sustainable catalyst in electro⁃Fenton process for improving oxidation of sulfamethazine. Kinetics,mechanism and toxicity assessment[J]. Water Research, 2016, 94:52-61. doi: 10.1016/j.watres.2016.02.042
|
69 |
BARHOUMI N, LABIADH L, OTURAN M A,et al. Electrochemical mineralization of the antibiotic levofloxacin by electro⁃Fenton⁃pyrite process[J]. Chemosphere, 2015, 141:250-257. doi: 10.1016/j.chemosphere.2015.08.003
|
70 |
MASHAYEKH⁃SALEHI A, AKBARMOJENI K, ROUDBARI A,et al. Use of mine waste for H 2O 2⁃assisted heterogeneous Fenton⁃like degradation of tetracycline by natural pyrite nanoparticles:Catalyst characterization,degradation mechanism,operational parameters and cytotoxicity assessment[J]. Journal of Cleaner Production, 2021, 291:125235. doi: 10.1016/j.jclepro.2020.125235
|
71 |
RAHIMI F, HOEK J P VAN DER, ROYER S,et al. Pyrite nanoparticles derived from mine waste as efficient catalyst for the activation of persulfates for degradation of tetracycline[J]. Journal of Water Process Engineering, 2021, 40:101808. doi: 10.1016/j.jwpe.2020.101808
|
72 |
ZHUAN Run, WANG Jianlong. Enhanced degradation and mineralization of sulfamethoxazole by integrating gamma radiation with Fenton⁃like processes[J]. Radiation Physics and Chemistry, 2020, 166:108457. doi: 10.1016/j.radphyschem.2019.108457
|
73 |
CHEN Xiaoying, ZHUAN Run, WANG Jianlong. Assessment of degradation characteristic and mineralization efficiency of norfloxacin by ionizing radiation combined with Fenton⁃like oxidation[J]. Journal of Hazardous Materials, 2021, 404:124172. doi: 10.1016/j.jhazmat.2020.124172
|
74 |
PELALAK R, ALIZADEH R, GHARESHABANI E. Enhanced heterogeneous catalytic ozonation of pharmaceutical pollutants using a novel nanostructure of iron⁃based mineral prepared via plasma technology:A comparative study[J]. Journal of Hazardous Materials, 2020, 392:122269. doi: 10.1016/j.jhazmat.2020.122269
|
75 |
GARCÍA⁃MUÑOZ P, PLIEGO G, ZAZO J A,et al. Sulfonamides photoassisted oxidation treatments catalyzed by ilmenite[J]. Chemosphere, 2017, 180:523-530. doi: 10.1016/j.chemosphere.2017.04.047
|
76 |
WU Suqing, LI Xueyan, TIAN Yanqin,et al. Excellent photocatalytic degradation of tetracycline over black anatase⁃TiO 2 under visible light[J]. Chemical Engineering Journal, 2021, 406:126747. doi: 10.1016/j.cej.2020.126747
|
77 |
ZHANG Xin, DENG Honghu, ZHANG Guoquan,et al. Natural bornite as an efficient and cost⁃effective persulfate activator for degradation of tetracycline:Performance and mechanism[J]. Chemical Engineering Journal, 2020, 381:122717. doi: 10.1016/j.cej.2019.122717
|
78 |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0
|
79 |
CHEN Jiabin, WANG Ying, QIAN Yajie,et al. Fe(Ⅲ)⁃promoted transformation of β⁃lactam antibiotics:Hydrolysis vs oxidation[J]. Journal of Hazardous Materials, 2017, 335:117-124. doi: 10.1016/j.jhazmat.2017.03.067
|
80 |
GOUZA A, SAOIABI S, KARBANE M EL,et al. Oil shale powders and their interactions with ciprofloxacin,ofloxacin,and oxytetracycline antibiotics[J]. Environmental Science and Pollution Research,2017,24(33):25977-25985.
|
81 |
GULER U A, SARIOGLU M. Removal of tetracycline from wastewater using pumice stone:Equilibrium,kinetic and thermodynamic studies[J]. Journal of Environmental Health Science & Engineering, 2014, 12:79. doi: 10.1186/2052-336x-12-79
|
82 |
殷丹阳,史静,许正文,等. 电气石吸附喹诺酮类抗生素的吸附特性研究[C]. 第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会,2016.
|
83 |
LI Guoting, FENG Yanmin, ZHU Weiyong,et al. Enhanced adsorptive performance of tetracycline antibiotics on lanthanum modified diatomite[J]. Korean Journal of Chemical Engineering, 2015, 32(10):2109-2115. doi: 10.1007/s11814-015-0058-2
|
84 |
PREMARATHNA K S D, RAJAPAKSHA A U, ADASSORIYA N,et al. Clay⁃biochar composites for sorptive removal of tetracycline antibiotic in aqueous media[J]. Journal of Environmental Management, 2019, 238:315-322. doi: 10.1016/j.jenvman.2019.02.069
|
85 |
BANSAL O P. Thermodynamics of equilibrium adsorption of antibiotics by clay minerals and humic acid⁃clay complexes[J]. National Academy Science Letters, 2012, 35(2):109-114. doi: 10.1007/s40009-012-0028-8
|
86 |
LI Yuan, WANG Xuejiang, LI Jing,et al. Effects of struvite⁃humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure⁃soil[J]. Chemical Engineering Journal, 2019, 375:122013. doi: 10.1016/j.cej.2019.122013
|
87 |
吴沙沙. 可溶性腐殖酸对典型粘土矿物吸附诺氟沙星的影响研究[D]. 北京:中国地质大学,2014.
|
|
WU Shasha. Effests of dissolved humic acid on sorption of norfloxacin onto typical clay minerals[D]. Beijing:China University of Geosciences,2014.
|