1 |
LIU Qiming, ZHOU Yi, LU Jian,et al. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater:A critical review[J]. Chemosphere, 2020, 241:125043. doi: 10.1016/j.chemosphere.2019.125043
|
2 |
PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment:Current knowledge,understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72:3-27. doi: 10.1016/j.watres.2014.08.053
|
3 |
KUMAR A, JIGYASU D K, KUMAR A,et al. Nickel in terrestrial biota:Comprehensive review on contamination,toxicity,tolerance and its remediation approaches[J]. Chemosphere, 2021, 275:129996. doi: 10.1016/j.chemosphere.2021.129996
|
4 |
PRASAD S, YADAV K K, KUMAR S,et al. Chromium contamination and effect on environmental health and its remediation:A sustainable approaches[J]. Journal of Environmental Management, 2021, 285:112174. doi: 10.1016/j.jenvman.2021.112174
|
5 |
吴二威. 海河支流重金属污染特征及Hg2+对水生藻类的毒性研究[D]. 石河子:石河子大学,2014.
|
6 |
KENG P S, LEE S L, HA S T,et al. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials[J]. Environmental Chemistry Letters, 2014, 12(1):15-25. doi: 10.1007/s10311-013-0427-1
|
7 |
SINHA RAY S, BOUSMINA M. Biodegradable polymers and their layered silicate nanocomposites:In greening the 21st century materials world[J]. Progress in Materials Science, 2005, 50(8):962-1079. doi: 10.1016/j.pmatsci.2005.05.002
|
8 |
GUPTA V K, CARROTT P J M, RIBEIRO CARROTT M M L,et al. Low-cost adsorbents:Growing approach to wastewater treatment:A review[J]. Critical Reviews in Environmental Science and Technology, 2009, 39(10):783-842. doi: 10.1080/10643380801977610
|
9 |
GUPTA V K, SAINI V K, JAIN N. Adsorption of As(Ⅲ) from aqueous solutions by iron oxide-coated sand[J]. Journal of Colloid and Interface Science, 2005, 288(1):55-60. doi: 10.1016/j.jcis.2005.02.054
|
10 |
GUPTA S S, BHATTACHARYYA K G. Removal of Cd(Ⅱ) from aqueous solution by kaolinite,montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives[J]. Journal of Hazardous Materials, 2006, 128(2/3):247-257. doi: 10.1016/j.jhazmat.2005.08.008
|
11 |
BHATTACHARYYA K G, GUPTA S S. Adsorption of Co(Ⅱ) from aqueous medium on natural and acid activated kaolinite and montmorillonite[J]. Separation Science and Technology, 2007, 42(15):3391-3418. doi: 10.1080/01496390701515136
|
12 |
BHATTACHARYYA K G, GUPTA S SEN. Adsorption of chromium(Ⅵ) from water by clays[J]. Industrial & Engineering Chemistry Research, 2006, 45(21):7232-7240. doi: 10.1021/ie060586j
|
13 |
PRIYANTHA N, BANDARANAYAKA A. Investigation of kinetics of Cr(Ⅵ)-fired brick clay interaction[J]. Journal of Hazardous Materials, 2011, 188(1/2/3):193-197. doi: 10.1016/j.jhazmat.2011.01.090
|
14 |
CHEN Gongning, SHAH K J, SHI Lin,et al. Removal of Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by synthetic mineral adsorbent:Performance and mechanisms[J]. Applied Surface Science, 2017, 409:296-305. doi: 10.1016/j.apsusc.2017.03.022
|
15 |
杨晨,吴俊书,王金淑,等. 硅藻土的可控沸石化及其对铅离子的吸附固定[J]. 无机盐工业,2022,54(4):128-134.
|
|
YANG Chen, WU Junshu, WANG Jinshu,et al. Controlled zeolitization of diatomite for the adsorption and its immobilization of Pb(Ⅱ) ions[J]. Inorganic Chemicals Industry,2022,54(4):128-134.
|
16 |
赵浩迪,上官宇飞,于水利. 改性沸石吸附-微滤一体化装置去除水中铯和锶[J]. 工业水处理,2022,42(1):92-99.
|
|
ZHAO Haodi, SHANGGUAN Yufei, YU Shuili. Removal of cesium and strontium from water by an integrated device of adsorption-microfiltration using modified permutate as adsorbent[J]. Industrial Water Treatment,2022,42(1):92-99.
|
17 |
CRUZ-GUZMÁN M, CELIS R, HERMOSÍN M C,et al. Heavy metal adsorption by montmorillonites modified with natural organic cations[J]. Soil Science Society of America Journal, 2006, 70(1):215-221. doi: 10.2136/sssaj2005.0131
|
18 |
RAO R A K, KASHIFUDDIN M. Adsorption studies of Cd(Ⅱ) on ball clay:Comparison with other natural clays[J]. Arabian Journal of Chemistry, 2016, 9:S1233-S1241. doi: 10.1016/j.arabjc.2012.01.010
|
19 |
WU Di, HU Lihua, WANG Yaoguang,et al. EDTA modified β-cyclodextrin/chitosan for rapid removal of Pb(Ⅱ) and acid red from aqueous solution[J]. Journal of Colloid and Interface Science, 2018, 523:56-64. doi: 10.1016/j.jcis.2018.03.080
|
20 |
VAKILI M, MOJIRI A, ZWAIN H M,et al. Effect of beading parameters on cross-linked chitosan adsorptive properties[J]. Reactive and Functional Polymers, 2019, 144:104354. doi: 10.1016/j.reactfunctpolym.2019.104354
|
21 |
LIU Jinyun, CHEN Yu, HAN Tianli,et al. A biomimetic SiO 2@chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water[J]. Chemosphere, 2019, 214:738-742. doi: 10.1016/j.chemosphere.2018.09.172
|
22 |
GUPTA A, CHAUHAN V S, SANKARARAMAKRISHNAN N. Preparation and evaluation of iron-chitosan composites for removal of As(Ⅲ) and As(Ⅴ) from arsenic contaminated real life groundwater[J]. Water Research, 2009, 43(15):3862-3870. doi: 10.1016/j.watres.2009.05.040
|
23 |
GUPTA A, YUNUS M, SANKARARAMAKRISHNAN N. Equilibrium and dynamic studies of the removal of As(Ⅲ) and As(Ⅴ) from contaminated aqueous systems using a functionalized biopolymer[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(4):546-552. doi: 10.1002/jctb.2747
|
24 |
ABOU EL-REASH Y G, OTTO M, KENAWY I M,et al. Adsorption of Cr(Ⅵ) and As(Ⅴ) ions by modified magnetic chitosan chelating resin[J]. International Journal of Biological Macromolecules, 2011, 49(4):513-522. doi: 10.1016/j.ijbiomac.2011.06.001
|
25 |
LI Zhenhua, CHANG Xijun, ZOU Xiaojun,et al. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions[J]. Analytica Chimica Acta, 2009, 632(2):272-277. doi: 10.1016/j.aca.2008.11.001
|
26 |
PHILIPPOVA O, BARABANOVA A, MOLCHANOV V,et al. Magnetic polymer beads:Recent trends and developments in synthetic design and applications[J]. European Polymer Journal, 2011, 47(4):542-559. doi: 10.1016/j.eurpolymj.2010.11.006
|
27 |
REN Yong, ABBOOD H A, HE Fengbo,et al. Magnetic EDTA-modified chitosan/SiO 2/Fe 3O 4 adsorbent:Preparation,characterization,and application in heavy metal adsorption[J]. Chemical Engineering Journal, 2013, 226:300-311. doi: 10.1016/j.cej.2013.04.059
|
28 |
WANG Hui, CHEN Qianwang, CHEN Jian,et al. Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core:Synthesis and their application in removal of heavy metal ions[J]. Nanoscale, 2011, 3(11):4600-4603. doi: 10.1039/c1nr11012h
|
29 |
BEDIAKO J K, WEI Wei, YUN Y S. Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63:250-258. doi: 10.1016/j.jtice.2016.03.009
|
30 |
WANG Jian, LIU Min, DUAN Chao,et al. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal[J]. Carbohydrate Polymers, 2019, 206:837-843. doi: 10.1016/j.carbpol.2018.11.059
|
31 |
JOHARI K, SAMAN N, SONG S T,et al. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents[J]. International Biodeterioration & Biodegradation, 2016, 109:45-52. doi: 10.1016/j.ibiod.2016.01.004
|
32 |
|
33 |
SHEIKHI A, SAFARI S, YANG Han,et al. Copper removal using electrosterically stabilized nanocrystalline cellulose[J]. ACS Applied Materials & Interfaces, 2015, 7(21):11301-11308. doi: 10.1021/acsami.5b01619
|
34 |
WANG Ran, GUAN Sihui, SATO A,et al. Nanofibrous microfiltration membranes capable of removing bacteria,viruses and heavy metal ions[J]. Journal of Membrane Science, 2013, 446:376-382. doi: 10.1016/j.memsci.2013.06.020
|
35 |
HOSSAIN M A, NGO H H, GUO W S,et al. Performance of cabbage and cauliflower wastes for heavy metals removal[J]. Desalination and Water Treatment, 2014, 52(4/5/6):844-860. doi: 10.1080/19443994.2013.826322
|
36 |
BEN-ALI S, JAOUALI I, SOUISSI-NAJAR S,et al. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal[J]. Journal of Cleaner Production, 2017, 142:3809-3821. doi: 10.1016/j.jclepro.2016.10.081
|
37 |
BASU M, GUHA A K,RAY L. Adsorption of lead on cucumber peel[J]. Journal of Cleaner Production, 2017, 151:603-615. doi: 10.1016/j.jclepro.2017.03.028
|
38 |
GUIZA S. Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel[J]. Ecological Engineering, 2017, 99:134-140. doi: 10.1016/j.ecoleng.2016.11.043
|
39 |
MELO J C P, SILVA FILHO E C, SANTANA S A A,et al. Synthesized cellulose/succinic anhydride as an ion exchanger. calorimetry of divalent cations in aqueous suspension[J]. Thermochimica Acta, 2011, 524(1/2):29-34. doi: 10.1016/j.tca.2011.06.007
|
40 |
FAKHRE N A, IBRAHIM B M. The use of new chemically modified cellulose for heavy metal ion adsorption[J]. Journal of Hazardous Materials, 2018, 343:324-331. doi: 10.1016/j.jhazmat.2017.08.043
|
41 |
LIU Peng, BORRELL P F, BOŽIČ M,et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag +,Cu 2+ and Fe 3+ from industrial effluents[J]. Journal of Hazardous Materials, 2015, 294:177-185. doi: 10.1016/j.jhazmat.2015.04.001
|
42 |
YU Xiaolin, TONG Shengrui, GE Maofa,et al. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals[J]. Journal of Environmental Sciences, 2013, 25(5):933-943. doi: 10.1016/s1001-0742(12)60145-4
|
43 |
SUN Chang, NI Jiadong, ZHAO Chunyan,et al. Preparation of a cellulosic adsorbent by functionalization with pyridone diacid for removal of Pb(Ⅱ) and Co(Ⅱ) from aqueous solutions[J]. Cellulose, 2017, 24(12):5615-5624. doi: 10.1007/s10570-017-1519-z
|
44 |
SHARMA P, CHATTOPADHYAY A, SHARMA S K,et al. Nanocellulose from spinifex as an effective adsorbent to remove cadmium(Ⅱ) from water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3):3279-3290. doi: 10.1021/acssuschemeng.7b03473
|
45 |
SHARMA P R, CHATTOPADHYAY A, ZHAN Chengbo,et al. Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method[J]. Cellulose, 2018, 25(3):1961-1973. doi: 10.1007/s10570-018-1659-9
|
46 |
ZHANG Nan, ZANG Guolong, SHI Chen,et al. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI:Preparation,characterization,and application for Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2016, 316:11-18. doi: 10.1016/j.jhazmat.2016.05.018
|
47 |
SEHAQUI H, GÁLVEZ M E, BECATINNI V,et al. Fast and reversible direct CO 2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams[J]. Environmental Science & Technology, 2015, 49(5):3167-3174. doi: 10.1021/es504396v
|
48 |
SEHAQUI H, LARRAYA U P, LIU Peng,et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment[J]. Cellulose, 2014, 21(4):2831-2844. doi: 10.1007/s10570-014-0310-7
|
49 |
ZHOU Yiming, FU Shiyu, ZHANG Liangliang,et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(Ⅱ)[J]. Carbohydrate Polymers, 2014, 101:75-82. doi: 10.1016/j.carbpol.2013.08.055
|
50 |
SUOPAJÄRVI T, LIIMATAINEN H, KARJALAINEN M,et al. Lead adsorption with sulfonated wheat pulp nanocelluloses[J]. Journal of Water Process Engineering, 2015, 5:136-142. doi: 10.1016/j.jwpe.2014.06.003
|
51 |
SUOPAJÄRVI T, LIIMATAINEN H, HORMI O,et al. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses[J]. Chemical Engineering Journal, 2013, 231:59-67. doi: 10.1016/j.cej.2013.07.010
|
52 |
HOKKANEN S, BHATNAGAR A, SILLANPÄÄ M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research, 2016, 91:156-173. doi: 10.1016/j.watres.2016.01.008
|
53 |
HOKKANEN S, REPO E, SUOPAJÄRVI T,et al. Adsorption of Ni(Ⅱ),Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3):1471-1487. doi: 10.1007/s10570-014-0240-4
|
54 |
MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126:199-207. doi: 10.1016/j.carbpol.2015.03.015
|
55 |
YAO C, WANG F, CAI Z,et al. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions[J]. RSC Advances, 2016, 6(95):92648-92654. doi: 10.1039/c6ra20598d
|
56 |
LIU Peng, SEHAQUI H, TINGAUT P,et al. Cellulose and chitin nanomaterials for capturing silver ions(Ag +) from water via surface adsorption[J]. Cellulose, 2014, 21(1):449-461. doi: 10.1007/s10570-013-0139-5
|
57 |
SINGH K, ARORA J K, SINHA T J M,et al. Functionalization of nanocrystalline cellulose for decontamination of Cr(Ⅲ) and Cr(Ⅵ) from aqueous system:Computational modeling approach[J]. Clean Technologies and Environmental Policy, 2014, 16(6):1179-1191. doi: 10.1007/s10098-014-0717-8
|
58 |
KARDAM A, RAJ K R, SRIVASTAVA S,et al. Nanocellulose fibers for biosorption of cadmium,nickel,and lead ions from aqueous solution[J]. Clean Technologies and Environmental Policy, 2014, 16(2):385-393. doi: 10.1007/s10098-013-0634-2
|
59 |
CHEN Shiyan, ZOU Yu, YAN Zhiyong,et al. Carboxymethylated-bacterial cellulose for copper and lead ion removal[J]. Journal of Hazardous Materials, 2009, 161(2/3):1355-1359. doi: 10.1016/j.jhazmat.2008.04.098
|
60 |
ZHU Huixia, JIA Shiru, WAN Tong,et al. Biosynthesis of spherical Fe 3O 4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions[J]. Carbohydrate Polymers, 2011, 86(4):1558-1564. doi: 10.1016/j.carbpol.2011.06.061
|
61 |
赖华. 离子交换树脂处理中低浓度氨氮废水的研究[D]. 赣州:江西理工大学,2012.
|
62 |
SARUCHI, KUMAR V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb 2+ ions from aqueous solutions by a hybrid ion-exchanger[J]. Arabian Journal of Chemistry, 2019, 12(3):316-329. doi: 10.1016/j.arabjc.2016.11.009
|
63 |
|
|
WANG Fei, WANG Lianjun, SUN Xiuyun,et al. Adsorption behavior and mechanism of lead on strong-acid cation exchange resin[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3):564-569. doi: 10.3321/j.issn:1004-0609.2008.03.031
|
64 |
马红梅. 微污染饮用水源中砷及几种重金属离子的吸附分离过程研究[D]. 上海:同济大学,2007.
|
65 |
RENGARAJ S, YEON K H, MOON S H. Removal of chromium from water and wastewater by ion exchange resins[J]. Journal of Hazardous Materials, 2001, 87(1/2/3):273-287. doi: 10.1016/s0304-3894(01)00291-6
|
66 |
曹珂,闵甜,王林,等. 离子交换树脂法处理废水中重金属的研究进展[J]. 应用化工,2013,42(8):1520-1523.
|
|
CAO Ke, MIN Tian, WANG Lin,et al. Progress of heavy metals in the ion exchange resin of wastewater treatment[J]. Applied Chemical Industry,2013,42(8):1520-1523.
|
67 |
CHEN Yiliang, PAN Bingcai, ZHANG Shujuan,et al. Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2011, 190(1/2/3):1037-1044. doi: 10.1016/j.jhazmat.2011.04.049
|
68 |
AN Fuqiang, WANG Yong, XUE Xiaoyan,et al. Design and application of thiourea modified D301 resin for the effective removal of toxic heavy metal ions[J]. Chemical Engineering Research and Design, 2018, 130:78-86. doi: 10.1016/j.cherd.2017.12.001
|
69 |
NASREEN S, UROOJ A, RAFIQUE U,et al. Functionalized mesoporous silica:Absorbents for water purification[J]. Desalination and Water Treatment, 2016, 57(60):29352-29362. doi: 10.1080/19443994.2016.1185744
|
70 |
BECK J S, VARTULI J C, ROTH W J,et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society, 1992, 114(27):10834-10843. doi: 10.1021/ja00053a020
|
71 |
PÉREZ-QUINTANILLA D, SÁNCHEZ A, SIERRA I. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media:Influence of the synthesis route on adsorption capacity and efficiency[J]. Journal of Colloid and Interface Science, 2016, 472:126-134. doi: 10.1016/j.jcis.2016.03.048
|
72 |
SHIRAISHI Y, NISHIMURA G, HIRAI T,et al. Separation of transition metals using inorganic adsorbents modified with chelating ligands[J]. Industrial & Engineering Chemistry Research, 2002, 41(20):5065-5070. doi: 10.1021/ie020119b
|
73 |
DA’NA E, SAYARI A. Optimization of copper removal efficiency by adsorption on amine-modified SBA-15:Experimental design methodology[J]. Chemical Engineering Journal, 2011, 167(1):91-98. doi: 10.1016/j.cej.2010.12.005
|
74 |
WALCARIUS A, DELACÔTE C. Rate of access to the binding sites in organically modified silicates. 3. effect of structure and density of functional groups in mesoporous solids obtained by the co-condensation route[J]. Chemistry of Materials, 2003, 15(22):4181-4192. doi: 10.1021/cm031089l
|
75 |
LEE J Y, CHEN C H, CHENG S,et al. Adsorption of Pb(Ⅱ) and Cu(Ⅱ) metal ions on functionalized large-pore mesoporous silica[J]. International Journal of Environmental Science and Technology, 2016, 13(1):65-76. doi: 10.1007/s13762-015-0841-y
|
76 |
HUA Ming, ZHANG Shujuan, PAN Bingcai,et al. Heavy metal removal from water/wastewater by nanosized metal oxides:A review[J]. Journal of Hazardous Materials, 2012, 211/212:317-331. doi: 10.1016/j.jhazmat.2011.10.016
|
77 |
NGUYEN T C, LOGANATHAN P, NGUYEN T V,et al. Simultaneous adsorption of Cd,Cr,Cu,Pb,and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies[J]. Chemical Engineering Journal, 2015, 270:393-404. doi: 10.1016/j.cej.2015.02.047
|
78 |
LI Tao, ZHU Zhe, WANG Dongsheng,et al. Characterization of floc size,strength and structure under various coagulation mechanisms[J]. Powder Technology, 2006, 168(2):104-110. doi: 10.1016/j.powtec.2006.07.003
|
79 |
XU Nan, GAO Yuan. Characterization of hematite dissolution affected by oxalate coating,kinetics and pH[J]. Applied Geochemistry, 2008, 23(4):783-793. doi: 10.1016/j.apgeochem.2007.12.026
|
80 |
RASHIDI F, SARABI R S, GHASEMI Z,et al. Kinetic,equilibrium and thermodynamic studies for the removal of lead(Ⅱ) and copper(Ⅱ) ions from aqueous solutions by nanocrystalline TiO 2 [J]. Superlattices and Microstructures, 2010, 48(6):577-591. doi: 10.1016/j.spmi.2010.09.011
|
81 |
ZHUANG Fuqiang, TAN Ruiqin, SHEN Wenfeng,et al. Monodisperse magnetic hydroxyapatite/Fe 3O 4 microspheres for removal of lead(Ⅱ) from aqueous solution[J]. Journal of Alloys and Compounds, 2015, 637:531-537. doi: 10.1016/j.jallcom.2015.02.216
|
82 |
ZHANG Jianming, ZHAI Shangru, LI Shi,et al. Pb(Ⅱ) removal of Fe 3O 4@SiO 2-NH 2 core-shell nanomaterials prepared via a controllable Sol-gel process[J]. Chemical Engineering Journal, 2013, 215/216:461-471. doi: 10.1016/j.cej.2012.11.043
|
83 |
YANG Hang, LU Mengjie, CHEN Duo,et al. Efficient and rapid removal of Pb 2+ from water by magnetic Fe 3O 4@MnO 2 core-shell nanoflower attached to carbon microtube:Adsorption behavior and process study[J]. Journal of Colloid and Interface Science, 2020, 563:218-228. doi: 10.1016/j.jcis.2019.12.065
|
84 |
WANG Xiu, HUANG Kai, CHEN Ying,et al. Preparation of dumbbell manganese dioxide/gelatin composites and their application in the removal of lead and cadmium ions[J]. Journal of Hazardous Materials, 2018, 350:46-54. doi: 10.1016/j.jhazmat.2018.02.020
|
85 |
CHEN Jie, WANG Ning, MA Hongyu,et al. Facile modification of a polythiophene/TiO 2 composite using surfactants in an aqueous medium for an enhanced Pb(Ⅱ) adsorption and mechanism investigation[J]. Journal of Chemical & Engineering Data, 2017, 62(7):2208-2221. doi: 10.1021/acs.jced.7b00329
|
86 |
MAYO J T, YAVUZ C, YEAN S,et al. The effect of nanocrystalline magnetite size on arsenic removal[J]. Science and Technology of Advanced Materials, 2007, 8(1/2):71-75. doi: 10.1016/j.stam.2006.10.005
|
87 |
SU Hui, YE Zhibin, HMIDI N. High-performance iron oxide-graphene oxide nanocomposite adsorbents for arsenic removal[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522:161-172. doi: 10.1016/j.colsurfa.2017.02.065
|
88 |
GUI Chenxi, LI Qianjie, Lingling LÜ,et al. Core-shell structured MgO@mesoporous silica spheres for enhanced adsorption of methylene blue and lead ions[J]. RSC Advances, 2015, 5(26):20440-20445. doi: 10.1039/c5ra02596f
|
89 |
XIN Xiaodong, WEI Qin, YANG Jian,et al. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe 3O 4 nanoparticles[J]. Chemical Engineering Journal, 2012, 184:132-140. doi: 10.1016/j.cej.2012.01.016
|
90 |
REPO E, WARCHOŁ J K, BHATNAGAR A,et al. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials[J]. Journal of Colloid and Interface Science, 2011, 358(1):261-267. doi: 10.1016/j.jcis.2011.02.059
|
91 |
PEARSON R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22):3533-3539. doi: 10.1021/ja00905a001
|
92 |
SHARMA A, LEE B K. Cd(Ⅱ) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent[J]. Applied Surface Science, 2014, 313:624-632. doi: 10.1016/j.apsusc.2014.06.034
|
93 |
KIREETI K V M K, CHANDRAKANTH G, KADAM M M,et al. A sodium modified reduced graphene oxide-Fe3O4 nanocomposite for efficient lead(Ⅱ) adsorption[J]. RSC Advances,2016,6(88):84825-84836.
|
94 |
KUMAR K Y, MURALIDHARA H B, NAYAKA Y A,et al. Hierarchically assembled mesoporous ZnO nanorods for the removal of lead and cadmium by using differential pulse anodic stripping voltammetric method[J]. Powder Technology, 2013, 239:208-216. doi: 10.1016/j.powtec.2013.02.009
|
95 |
EL-WAKEEL S T, EL-TAWIL R S, ABUZEID H A M,et al. Synthesis and structural properties of MnO 2 as adsorbent for the removal of lead(Pb 2+) from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72:95-103. doi: 10.1016/j.jtice.2017.01.008
|
96 |
SU Qin, PAN Bingcai, WAN Shunli,et al. Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead,cadmium,and zinc ions from water[J]. Journal of Colloid and Interface Science, 2010, 349(2):607-612. doi: 10.1016/j.jcis.2010.05.052
|
97 |
ZAMAN M I, MUSTAFA S, KHAN S,et al. Effect of phosphate complexation on Cd 2+ sorption by manganese dioxide( β-MnO 2)[J]. Journal of Colloid and Interface Science, 2009, 330(1):9-19. doi: 10.1016/j.jcis.2008.10.053
|
98 |
BADRUDDOZA A Z M, TAY A S H, TAN P Y,et al. Carboxymethyl- β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions:Synthesis and adsorption studies[J]. Journal of Hazardous Materials, 2011, 185(2/3):1177-1186. doi: 10.1016/j.jhazmat.2010.10.029
|
99 |
MOHAMAD NOR N, LAU L C, LEE K T,et al. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control:A review[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):658-666. doi: 10.1016/j.jece.2013.09.017
|
100 |
LAKHERWAL D. Adsorption of heavy metals:A review[J]. International Journal of Environmental Research and Development,2014,4(1):41-48.
|
101 |
LE-MINH N, SIVRET E C, SHAMMAY A,et al. Factors affecting the adsorption of gaseous environmental odors by activated carbon:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(4):341-375. doi: 10.1080/10643389.2018.1460984
|
102 |
TRAN H N, NGUYEN H C, WOO S H,et al. Removal of various contaminants from water by renewable lignocellulose-derived biosorbents:A comprehensive and critical review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(23):2155-2219. doi: 10.1080/10643389.2019.1607442
|
103 |
DELIYANNI E A, KYZAS G Z, TRIANTAFYLLIDIS K S,et al. Activated carbons for the removal of heavy metal ions:A systematic review of recent literature focused on lead and arsenic ions[J]. Open Chemistry, 2015, 13(1):699-708. doi: 10.1515/chem-2015-0087
|
104 |
MANIRETHAN V, BALAKRISHNAN R M. Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon[J]. Environmental Technology & Innovation, 2020, 20:101085. doi: 10.1016/j.eti.2020.101085
|
105 |
LIU Qingsong, ZHENG Tong, LI Nan,et al. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue[J]. Applied Surface Science, 2010, 256(10):3309-3315. doi: 10.1016/j.apsusc.2009.12.025
|
106 |
JI Qingyu, LUO Guangqian, SHI Mengting,et al. Acceleration of the reaction of H 2S and SO 2 by non-thermal plasma to improve the mercury adsorption performance of activated carbon[J]. Chemical Engineering Journal, 2021, 423:130144. doi: 10.1016/j.cej.2021.130144
|
107 |
SHIM T, YOO J,RYU C,et al. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity[J]. Bioresource Technology, 2015, 197:85-90. doi: 10.1016/j.biortech.2015.08.055
|
108 |
GUPTA K, GUPTA D, KHATRI O P. Graphene-like porous carbon nanostructure from bengal gram bean husk and its application for fast and efficient adsorption of organic dyes[J]. Applied Surface Science, 2019, 476:647-657. doi: 10.1016/j.apsusc.2019.01.138
|
109 |
LU Xin, ZHANG Dongxiang, TESFAY REDA A,et al. Synthesis of amidoxime-grafted activated carbon fibers for efficient recovery of uranium(Ⅵ) from aqueous solution[J]. Industrial & Engineering Chemistry Research, 2017, 56(41):11936-11947. doi: 10.1021/acs.iecr.7b02690
|
110 |
Dan LÜ, LIU Yu, ZHOU Jiasheng,et al. Application of EDTA-functionalized bamboo activated carbon(BAC) for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions[J]. Applied Surface Science, 2018, 428:648-658. doi: 10.1016/j.apsusc.2017.09.151
|
111 |
LAI J Y, NGU L H. The production cost analysis of oil palm waste activated carbon:A pilot-scale evaluation[J]. Greenhouse Gases:Science and Technology, 2020, 10(5):999-1026. doi: 10.1002/ghg.2020
|
112 |
REHMAN A, PARK M, PARK S J. Current progress on the surface chemical modification of carbonaceous materials[J]. Coatings, 2019, 9(2):103. doi: 10.3390/coatings9020103
|
113 |
GHORBANI F, KAMARI S, ZAMANI S,et al. Optimization and modeling of aqueous Cr(Ⅵ) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology[J]. Surfaces and Interfaces, 2020, 18:100444. doi: 10.1016/j.surfin.2020.100444
|
114 |
DENG Yiyi, HUANG Shuang, LAIRD D A,et al. Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems[J]. Chemosphere, 2019, 218:308-318. doi: 10.1016/j.chemosphere.2018.11.081
|
115 |
AHMAD Z, GAO Bin, MOSA A,et al. Removal of Cu(Ⅱ),Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180:437-449. doi: 10.1016/j.jclepro.2018.01.133
|
116 |
WANG Rongzhong, HUANG Danlian, LIU Yunguo,et al. Investigating the adsorption behavior and the relative distribution of Cd 2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261:265-271. doi: 10.1016/j.biortech.2018.04.032
|
117 |
WU Long, WAN Wenjie, SHANG Zhongsheng,et al. Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(Ⅱ) adsorption from aqueous solutions[J]. Separation and Purification Technology, 2018, 197:156-169. doi: 10.1016/j.seppur.2018.01.007
|
118 |
VALENTÍN-REYES J, GARCÍA-REYES R B, GARCÍA-GONZÁLEZ A,et al. Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons[J]. Journal of Environmental Management, 2019, 236:815-822. doi: 10.1016/j.jenvman.2019.02.014
|
119 |
XIE Xinling, GAO Hongliang, LUO Xuan,et al. Polyethyleneimine modified activated carbon for adsorption of Cd(Ⅱ) in aqueous solution[J]. Journal of Environmental Chemical Engineering, 2019, 7(3):103183. doi: 10.1016/j.jece.2019.103183
|
120 |
ZHOU Yanmei, GAO Bin, ZIMMERMAN A R,et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231:512-518. doi: 10.1016/j.cej.2013.07.036
|
121 |
XU Meng, ZHANG Yunsong, ZHANG Zhiming,et al. Study on the adsorption of Ca 2+,Cd 2+ and Pb 2+ by magnetic Fe 3O 4 yeast treated with EDTA dianhydride[J]. Chemical Engineering Journal, 2011, 168(2):737-745. doi: 10.1016/j.cej.2011.01.069
|
122 |
GALLIOS G, TOLKOU A, KATSOYIANNIS I,et al. Adsorption of arsenate by nano scaled activated carbon modified by iron and manganese oxides[J]. Sustainability, 2017, 9:1684. doi: 10.3390/su9101684
|
123 |
ZHU H W, XU C L, WU D H,et al. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569):884-886. doi: 10.1126/science.1066996
|
124 |
LI Ruijun, CHANG Xijun, LI Zhenhua,et al. Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(Ⅱ) ion in water samples[J]. Microchimica Acta, 2011, 172(3/4):269-276. doi: 10.1007/s00604-010-0488-9
|
125 |
VELIČKOVIĆ Z S, MARINKOVIĆ A D, BAJIĆ Z J,et al. Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water[J]. Separation Science and Technology, 2013, 48(13):2047-2058. doi: 10.1080/01496395.2013.790446
|
126 |
TAWABINI B S, AL-KHALDI S F, KHALED M M,et al. Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes[J]. Journal of Environmental Science and Health. Part A,Toxic/Hazardous Substances & Environmental Engineering, 2011, 46(3):215-223. doi: 10.1080/10934529.2011.535389
|
127 |
ANDJELKOVIC I, NESIC J, STANKOVIC D,et al. Investigation of sorbents synthesised by mechanical-chemical reaction for sorption of As(Ⅲ) and As(Ⅴ) from aqueous medium[J]. Clean Technologies and Environmental Policy, 2014, 16(2):395-403. doi: 10.1007/s10098-013-0635-1
|
128 |
GUPTA V K, AGARWAL S, SALEH T A. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal[J]. Journal of Hazardous Materials, 2011, 185(1):17-23. doi: 10.1016/j.jhazmat.2010.08.053
|
129 |
ZHOU Lincheng, JI Liqin, MA Pengcheng,et al. Development of carbon nanotubes/CoFe 2O 4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(Ⅱ)[J]. Journal of Hazardous Materials, 2014, 265:104-114. doi: 10.1016/j.jhazmat.2013.11.058
|
130 |
PERREAULT F, FONSECA DE FARIA A, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16):5861-5896. doi: 10.1039/c5cs00021a
|
131 |
CHEN Lechen, LEI Shan, WANG Mozhen,et al. Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline[J]. Chinese Chemical Letters, 2016, 27(4):511-517. doi: 10.1016/j.cclet.2016.01.057
|
132 |
KIM S, PARK C M, JANG M,et al. Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents:A review[J]. Chemosphere, 2018, 212:1104-1124. doi: 10.1016/j.chemosphere.2018.09.033
|
133 |
WU Yan, LUO Hanjin, WANG Hou,et al. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide[J]. Journal of Colloid and Interface Science, 2013, 394:183-191. doi: 10.1016/j.jcis.2012.11.049
|
134 |
REN Yueming, YAN Ni, FENG Jing,et al. Adsorption mechanism of copper and lead ions onto graphene nanosheet/ δ-MnO 2 [J]. Materials Chemistry and Physics, 2012, 136(2/3):538-544. doi: 10.1016/j.matchemphys.2012.07.023
|
135 |
YANG Shengtao, CHANG Yanli, WANG Haifang,et al. Folding/aggregation of graphene oxide and its application in Cu 2+ removal[J]. Journal of Colloid and Interface Science, 2010, 351(1):122-127. doi: 10.1016/j.jcis.2010.07.042
|
136 |
LI Renjie, LIU Lifen, YANG Fenglin. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(Ⅱ)[J]. Chemical Engineering Journal, 2013, 229:460-468. doi: 10.1016/j.cej.2013.05.089
|
137 |
BHUNIA P, KIM G, BAIK C,et al. A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption[J]. Chemical Communications(Cambridge,England), 2012, 48(79):9888-9890. doi: 10.1039/c2cc35120j
|
138 |
LENG Yanqiu, GUO Weilin, SU Shengnan,et al. Removal of antimony(Ⅲ) from aqueous solution by graphene as an adsorbent[J]. Chemical Engineering Journal, 2012, 211/212:406-411. doi: 10.1016/j.cej.2012.09.078
|
139 |
HUANG Zhenghong, ZHENG Xiaoyu, Wei LÜ,et al. Adsorption of lead(Ⅱ) ions from aqueous solution on low-temperature exfoliated graphene nanosheets[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(12):7558-7562. doi: 10.1021/la200606r
|
140 |
HAO Liying, SONG Hongjie, ZHANG Lichun,et al. SiO 2/graphene composite for highly selective adsorption of Pb(Ⅱ) ion[J]. Journal of Colloid and Interface Science, 2012, 369(1):381-387. doi: 10.1016/j.jcis.2011.12.023
|
141 |
DENG Xiaojiao, Lili LÜ, LI Hongwei,et al. The adsorption properties of Pb(Ⅱ) and Cd(Ⅱ) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):923-930. doi: 10.1016/j.jhazmat.2010.07.117
|
142 |
SUI Zhuyin, MENG Qinghan, ZHANG Xuetong,et al. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification[J]. Journal of Materials Chemistry, 2012, 22(18):8767. doi: 10.1039/c2jm00055e
|
143 |
YUAN Yang, ZHANG Guanghui, LI Yang,et al. Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions[J]. Polymer Chemistry, 2013, 4(6):2164. doi: 10.1039/c3py21128b
|
144 |
JABEEN H, CHANDRA V, JUNG S,et al. Enhanced Cr(Ⅵ) removal using iron nanoparticle decorated graphene[J]. Nanoscale, 2011, 3(9):3583-3585. doi: 10.1039/c1nr10549c
|
145 |
REN Yueming, YAN Ni, WEN Qing,et al. Graphene/ δ-MnO 2 composite as adsorbent for the removal of nickel ions from wastewater[J]. Chemical Engineering Journal, 2011, 175:1-7. doi: 10.1016/j.cej.2010.08.010
|
146 |
ZHU Jiahua, WEI Suying, GU Hongbo,et al. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal[J]. Environmental Science & Technology, 2012, 46(2):977-985. doi: 10.1021/es2014133
|
147 |
NANDI D, GUPTA K, GHOSH A K,et al. Manganese-incorporated iron(Ⅲ) oxide-graphene magnetic nanocomposite:Synthesis,characterization,and application for the arsenic(Ⅲ)-sorption from aqueous solution[C]//Nanotechnology for Sustainable Development,2014:149-162.
|
148 |
LUO Shenglian, XU Xiangli, ZHOU Guiyin,et al. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(Ⅱ) from wastewater[J]. Journal of Hazardous Materials, 2014, 274:145-155. doi: 10.1016/j.jhazmat.2014.03.062
|
149 |
LEI Yinlin, CHEN Fei, LUO Yunjie,et al. Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions[J]. Chemical Physics Letters, 2014, 593:122-127. doi: 10.1016/j.cplett.2013.12.066
|
150 |
LIU Xia, WANG Xiangxue, LI Jiaxing,et al. Ozonated graphene oxides as high efficient sorbents for Sr(Ⅱ) and U(Ⅵ) removal from aqueous solutions[J]. Science China Chemistry, 2016, 59(7):869-877. doi: 10.1007/s11426-016-5594-z
|
151 |
XING Min, ZHUANG Shuting, WANG Jianlong. Efficient removal of Cs(Ⅰ) from aqueous solution using graphene oxide[J]. Progress in Nuclear Energy, 2020, 119:103167. doi: 10.1016/j.pnucene.2019.103167
|
152 |
LIU Shujuan, LI Song, ZHANG Hanxue,et al. Removal of uranium(Ⅵ) from aqueous solution using graphene oxide and its amine-functionalized composite[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,309(2):607-614.
|
153 |
MA Yingxia, XING Dan, RUAN Yongxin,et al. Fabrication of amino-functionalized magnetic graphene oxide nanocomposites for adsorption of Ag(Ⅰ) from aqueous solution[J]. Environmental Engineering Science, 2018, 35(3):219-230. doi: 10.1089/ees.2016.0483
|
154 |
ZHANG Chaozhi, YUAN Yang, GUO Ziyan. Experimental study on functional graphene oxide containing many primary amino groups fast-adsorbing heavy metal ions and adsorption mechanism[J]. Separation Science and Technology, 2018, 53(11):1666-1677. doi: 10.1080/01496395.2018.1436071
|
155 |
LEE J, PARK J A, KIM H G,et al. Most suitable amino silane molecules for surface functionalization of graphene oxide toward hexavalent chromium adsorption[J]. Chemosphere, 2020, 251:126387. doi: 10.1016/j.chemosphere.2020.126387
|
156 |
PIRVEYSIAN M, GHIACI M. Synthesis and characterization of sulfur functionalized graphene oxide nanosheets as efficient sorbent for removal of Pb 2+,Cd 2+,Ni 2+ and Zn 2+ ions from aqueous solution:A combined thermodynamic and kinetic studies[J]. Applied Surface Science, 2018, 428:98-109. doi: 10.1016/j.apsusc.2017.09.105
|
157 |
YANG Shuang, LI Lingyun, PEI Zhiguo,et al. Effects of humic acid on copper adsorption onto few-layer reduced graphene oxide and few-layer graphene oxide[J]. Carbon, 2014, 75:227-235. doi: 10.1016/j.carbon.2014.03.057
|
158 |
WANG Can, LUO Hanjin, ZHANG Zilong,et al. Removal of As(Ⅲ) and As(Ⅴ) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites[J]. Journal of Hazardous Materials, 2014, 268:124-131. doi: 10.1016/j.jhazmat.2014.01.009
|
159 |
ZHAN Wenwei, GAO Liang, FU Xue,et al. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal[J]. Applied Surface Science, 2019, 467/468:1122-1133. doi: 10.1016/j.apsusc.2018.10.248
|
160 |
FU Weng, HUANG Zhiqiang. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(Ⅱ),Cd(Ⅱ),Pb(Ⅱ),and Hg(Ⅱ) ions from aqueous solution:Synthesis,adsorption,and regeneration[J]. Chemosphere, 2018, 209:449-456. doi: 10.1016/j.chemosphere.2018.06.087
|
161 |
|
|
LI Hongqiang, LIU Chenglun, XU Longjun. Application of microorganism adsorbent in treatment of wastewater containing heavy metal:A review[J]. Materials Protection, 2006, 39(11):48-52. doi: 10.3969/j.issn.1001-1560.2006.11.014
|
162 |
HANSDA A, Kumar V. Biosorption of copper by bacterial adsorbents:A review[J]. Research Journal of Environmental Toxicology, 2015, 9(2):45-58. doi: 10.3923/rjet.2015.45.58
|
163 |
|
|
|
164 |
刘悦畅,李保珍,王涛,等. 2种菌联合修复农田土壤镉污染的研究[J]. 水土保持学报,2020,34(4):364-369.
|
|
LIU Yuechang, LI Baozhen, WANG Tao,et al. Study of two microbes combined to remediate field soil cadmium pollution[J]. Journal of Soil and Water Conservation,2020,34(4):364-369.
|
165 |
胡罡,张利,童明容,俞耀庭. 龟裂链霉菌对废水中Pb2+的吸附作用[J]. 南开大学学报(自然科学版),2000,33(2):28-31.
|
|
HU Gang, ZHANG Li, TONG Mingrong,et al. Adsorption of lead from waste water by str. rimosus[J]. Journal of Nankai University,2000,33(2):28-31.
|
166 |
CHINTALPUDI V K, KANAMARLAPUDI R K S L, MALLU U R,et al. Isolation,identification,biosorption optimization,characterization,isotherm,kinetic and application of novel bacterium Chelatococcus sp. biomass for removal of Pb(Ⅱ) ions from aqueous solutions[J]. International Journal of Environmental Science and Technology, 2022, 19(3):1531-1544. doi: 10.1007/s13762-021-03169-6
|
167 |
MUHAMMAD L H, IBRAHIM M B. Biosorption of iron by heavy-metal tolerant Micrococcus sp.[J]. Bayero Journal of Pure and Applied Sciences, 2018, 11(1):102-109. doi: 10.4314/bajopas.v11i1.19
|
168 |
XU Canran, HE Shengbao, LIU Yongmin,et al. Bioadsorption and biostabilization of cadmium by enterobacter cloacae TU[J]. Chemosphere, 2017, 173:622-629. doi: 10.1016/j.chemosphere.2017.01.005
|
169 |
UPADHYAY K H, VAISHNAV A M, TIPRE D R,et al. Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate Bacillus licheniformis [J]. Biotech, 2017, 7(5):313. doi: 10.1007/s13205-017-0958-4
|
170 |
KAPOOR A, VIRARAGHAVAN T. Fungal biosorption—An alternative treatment option for heavy metal bearing wastewaters:A review[J]. Bioresource Technology, 1995, 53(3):195-206. doi: 10.1016/0960-8524(95)00072-m
|
171 |
|
|
ZHU Meng, LI Weihuan, CHENG Xianhao,et al. Research progress on biosorption mechanisms of heavy metals by fungus[J]. Industrial Water & Wastewater, 2012, 43(6):7-10. doi: 10.3969/j.issn.1009-2455.2012.06.002
|
172 |
SUAZO-MADRID A, MORALES-BARRERA L, ARANDA-GARCÍA E,et al. Nickel(Ⅱ) biosorption by rhodotorula glutinis[J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(1):51-64. doi: 10.1007/s10295-010-0828-0
|
173 |
|
|
WU Juan, LI Qingbiao. Study on mechanism of lead biosorption by phanerochaete chrysosporium[J]. Acta Scientiae Circumstantiae, 2001, 21(3):291-295. doi: 10.3321/j.issn:0253-2468.2001.03.008
|
174 |
ZHANG Ding, YIN Caiping, ABBAS N,et al. Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6[J]. Scientific Reports, 2020, 10:6940. doi: 10.1038/s41598-020-63813-y
|
175 |
KHAN S, SHAMSHAD I, WAQAS M,et al. Remediating industrial wastewater containing potentially toxic elements with four freshwater algae[J]. Ecological Engineering, 2017, 102:536-541. doi: 10.1016/j.ecoleng.2017.02.038
|
176 |
ESTEVES A, VALDMAN E, LEITE S. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp.[J]. Biotechnology Letters, 2000, 22:499-502. doi: 10.1023/a:1005608701510
|
177 |
HAMDY A A. Biosorption of heavy metals by marine algae[J]. Current Microbiology, 2000, 41(4):232-238. doi: 10.1007/s002840010126
|
178 |
CHENG Jinfeng, YIN Wenke, CHANG Zhaoyang,et al. Biosorption capacity and kinetics of cadmium(Ⅱ) on live and dead Chlorella vulgaris [J]. Journal of Applied Phycology, 2017, 29(1):211-221. doi: 10.1007/s10811-016-0916-2
|
179 |
QUINTELAS C, PEREIRA R, KAPLAN E,et al. Removal of Ni(Ⅱ) from aqueous solutions by an Arthrobacter viscosus biofilm supported on zeolite:From laboratory to pilot scale[J]. Bioresource Technology, 2013, 142:368-374. doi: 10.1016/j.biortech.2013.05.059
|
180 |
KUMAR A S K, KALIDHASAN S, RAJESH V,et al. Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater[J]. Industrial & Engineering Chemistry Research, 2012, 51(1):58-69. doi: 10.1021/ie201349h
|
181 |
SINGH N B, NAGPAL G, AGRAWAL S,et al. Water purification by using adsorbents:A review[J]. Environmental Technology & Innovation, 2018, 11:187-240. doi: 10.1016/j.eti.2018.05.006
|
182 |
CRINI G, LICHTFOUSE E, WILSON L D,et al. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment[J]. Green Adsorbents for Pollutant Removal, 2018:23-71. doi: 10.1007/978-3-319-92111-2_2
|
183 |
YANG Xiaodong, WAN Yongshan, ZHENG Yulin,et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions:A critical review[J]. Chemical Engineering Journal, 2019, 366:608-621. doi: 10.1016/j.cej.2019.02.119
|
184 |
FOMKIN A A, MEN’SHCHIKOV I E, PRIBYLOV A A,et al. Methane adsorption on microporous carbon adsorbent with wide pore size distribution[J]. Colloid Journal, 2017, 79(1):144-151. doi: 10.1134/s1061933x16060053
|
185 |
ENAIME G, BAÇAOUI A, YAACOUBI A,et al. Biochar for wastewater treatment:Conversion technologies and applications[J]. Applied Sciences, 2020, 10(10):3492. doi: 10.3390/app10103492
|
186 |
|
187 |
SURESH KUMAR P, KORVING L, KEESMAN K J,et al. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics[J]. Chemical Engineering Journal, 2019, 358:160-169. doi: 10.1016/j.cej.2018.09.202
|
188 |
XIE Ruzhen, JIN Yan, CHEN Yao,et al. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon[J]. Water Science and Technology, 2017, 76(11/12):3022-3034. doi: 10.2166/wst.2017.471
|
189 |
KUMAR S, LOGANATHAN V A, GUPTA R B,et al. An assessment of U(Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management, 2011, 92(10):2504-2512. doi: 10.1016/j.jenvman.2011.05.013
|
190 |
LIU Zhengang, ZHANG Fushen, WU Jianzhi. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 2010, 89(2):510-514. doi: 10.1016/j.fuel.2009.08.042
|
191 |
LIU Zhengang, ZHANG Fushen. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):933-939. doi: 10.1016/j.jhazmat.2009.01.085
|
192 |
GORZIN F, BAHRI RASHT ABADI M M. Adsorption of Cr(Ⅵ) from aqueous solution by adsorbent prepared from paper mill sludge:Kinetics and thermodynamics studies[J]. Adsorption Science & Technology, 2018, 36(1/2):149-169. doi: 10.1177/0263617416686976
|
193 |
LIU Xiaolu, MA Ran, WANG Xiangxue,et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution:A review[J]. Environmental Pollution, 2019, 252:62-73. doi: 10.1016/j.envpol.2019.05.050
|
194 |
MEDINA R P, NADRES E T, BALLESTEROS F C,et al. Incorporation of graphene oxide into a chitosan-poly(acrylic acid) porous polymer nanocomposite for enhanced lead adsorption[J]. Environmental Science:Nano, 2016, 3(3):638-646. doi: 10.1039/c6en00021e
|
195 |
LU C, CHIU H. Adsorption of zinc(Ⅱ) from water with purified carbon nanotubes[J]. Chemical Engineering Science, 2006, 61(4):1138-1145. doi: 10.1016/j.ces.2005.08.007
|
196 |
INYANG M I, GAO Bin, YAO Ying,et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4):406-433. doi: 10.1080/10643389.2015.1096880
|
197 |
DONG Lihua, HOU Li’an, WANG Zhansheng,et al. A new function of spent activated carbon in BAC process:Removing heavy metals by ion exchange mechanism[J]. Journal of Hazardous Materials, 2018, 359:76-84. doi: 10.1016/j.jhazmat.2018.07.030
|
198 |
KOŁODYŃSKA D, KRUKOWSKA J, THOMAS P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon[J]. Chemical Engineering Journal, 2017, 307:353-363. doi: 10.1016/j.cej.2016.08.088
|
199 |
YU Kailing, SHOW P L, ONG H C,et al. Microalgae from wastewater treatment to biochar-Feedstock preparation and conversion technologies[J]. Energy Conversion and Management, 2017, 150:1-13. doi: 10.1016/j.enconman.2017.07.060
|
200 |
EL-SHAFEY E I. Removal of Zn(Ⅱ) and Hg(Ⅱ) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk[J]. Journal of Hazardous Materials, 2010, 175(1/2/3):319-327. doi: 10.1016/j.jhazmat.2009.10.006
|
201 |
WU Shibiao, ZHANG Kaisheng, WANG Xuelong,et al. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide[J]. Chemical Engineering Journal, 2015, 262:1292-1302. doi: 10.1016/j.cej.2014.10.092
|
202 |
CAO Changyan, QU Jin, WEI Fang,et al. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions[J]. ACS Applied Materials & Interfaces, 2012, 4(8):4283-4287. doi: 10.1021/am300972z
|
203 |
RIO S, FAUR-BRASQUET C, LE COQ L,et al. Structure characterization and adsorption properties of pyrolyzed sewage sludge[J]. Environmental Science & Technology, 2005, 39(11):4249-4257. doi: 10.1021/es0497532
|
204 |
杨磊. 改型斜发沸石与钙、镁离子水溶液体系离子交换平衡研究[D]. 天津:河北工业大学,2010.
|
205 |
LI Hongbo, DONG Xiaoling, SILVA E B DA,et al. Mechanisms of metal sorption by biochars:Biochar characteristics and modifications[J]. Chemosphere, 2017, 178:466-478. doi: 10.1016/j.chemosphere.2017.03.072
|
206 |
WU Baile, WAN Jun, ZHANG Yanyang,et al. Selective phosphate removal from water and wastewater using sorption:Process fundamentals and removal mechanisms[J]. Environmental Science & Technology, 2020, 54(1):50-66. doi: 10.1021/acs.est.9b05569
|
207 |
RAHNEMAIE R, HIEMSTRA T, VAN RIEMSDIJK W H. Inner- and outer-sphere complexation of ions at the goethite-solution interface[J]. Journal of Colloid and Interface Science, 2006, 297(2):379-388. doi: 10.1016/j.jcis.2005.11.003
|
208 |
JING Lingyun, ZHANG Yun, LI Xiaoli,et al. Zirconium phosphonate doped PVA/Chitosan hybrid gel beads for enhanced selective extraction of Pb 2+ from water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56:103-112. doi: 10.1016/j.jtice.2015.04.002
|
209 |
JAYAKUMAR R, PRABAHARAN M, REIS R L,et al. Graft copolymerized chitosan:Present status and applications[J]. Carbohydrate Polymers, 2005, 62(2):142-158. doi: 10.1016/j.carbpol.2005.07.017
|
210 |
ZHANG Yun, HE Fu, LI Xiaoli. Three-dimensional composite hydrogel based on polyamine zirconium oxide,alginate and tannic acid with high performance for Pb(Ⅱ),Hg(Ⅱ) and Cr(Ⅵ) trapping[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65:304-311. doi: 10.1016/j.jtice.2016.05.023
|
211 |
LI Ronghui, LI Qi, GAO Shian,et al. Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles:Part A. Adsorption capacity and mechanism[J]. Chemical Engineering Journal, 2012, 185/186:127-135. doi: 10.1016/j.cej.2012.01.061
|
212 |
WIJNJA H, SCHULTHESS C P. Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al(hydr)oxide surfaces[J]. Journal of Colloid and Interface Science, 2000, 229(1):286-297. doi: 10.1006/jcis.2000.6960
|
213 |
LU Huanliang, ZHANG Weihua, YANG Yuxi,et al. Relative distribution of Pb 2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862. doi: 10.1016/j.watres.2011.11.058
|