1 |
|
|
ZHOU Jiawei, HE Xiwei, ZHANG Xuxiang,et al. Advance in sample extraction methods for biological toxicity assessment of water samples[J]. Industrial Water Treatment, 2021, 41(6):25-34. doi: 10.11894/iwt.2021-0181
|
2 |
|
|
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3):677-696. doi: 10.12030/j.cjee.201801179
|
3 |
QIN Fankai, CHEN Ru, LI Yicen,et al. Thermal terahertz analysis for the detection of trace organic matter[J]. Energy & Fuels, 2021, 35(5):4075-4080. doi: 10.1021/acs.energyfuels.0c04354
|
4 |
廖承美,仲子涵,刘思炎,等. 基于微生物电化学技术的BOD传感器的研究进展[J]. 工业水处理,2022,42(6):10-21.
|
|
LIAO Chengmei, ZHONG Zihan, LIU Siyan,et al. Research advances on BOD sensor based on microbial electrochemical technology[J]. Industrial Water Treatment,2022,42(6):10-21.
|
5 |
|
|
WANG Qiang, ZONG Youjian, LEI Ting,et al. Detection of five typical agrichemicals using a microbial fuel cell-based biotoxicity sensor[J]. Chinese Journal of Environmental Engineering, 2021, 15(12):4057-4066. doi: 10.12030/j.cjee.202109058
|
6 |
HOODA V, GAHLAUT A, GOTHWAL A,et al. Bilirubin enzyme biosensor:Potentiality and recent advances towards clinical bioanalysis[J]. Biotechnology Letters, 2017, 39(10):1453-1462. doi: 10.1007/s10529-017-2396-0
|
7 |
JOHNSON B N, MUTHARASAN R. Biosensor-based microRNA detection:Techniques,design,performance,and challenges[J]. Analyst, 2014, 139(7):1576-1588. doi: 10.1039/c3an01677c
|
8 |
ADEKUNLE A, RAGHAVAN V, TARTAKOVSKY B. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor[J]. Biosensors and Bioelectronics, 2019, 132:382-390. doi: 10.1016/j.bios.2019.03.011
|
9 |
ZHANG Xianlong, WU Di, ZHOU Xuxia,et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay[J]. TrAC Trends in Analytical Chemistry, 2019, 121:115668. doi: 10.1016/j.trac.2019.115668
|
10 |
QI Xiang, WANG Shuyi, LI Tian,et al. An electroactive biofilm-based biosensor for water safety:Pollutants detection and early-warning[J]. Biosensors and Bioelectronics, 2021, 173:112822. doi: 10.1016/j.bios.2020.112822
|
11 |
SANTIAGO E, POUDYAL S S, SHIN S Y,et al. Graphene oxide functionalized biosensor for detection of stress-related biomarkers[J]. Sensors, 2022, 22(2):100920. doi: 10.3390/s22020558
|
12 |
王雪文,徐峥妍,王凯歌,等. 基于纳米氧化锌的生物传感器研究进展(特邀)[J]. 光子学报,2022,51(10):316-339.
|
|
WANG Xuewen, XU Zhengyan, WANG Kaige,et al. Research progress of biosensors based on nano-zinc oxide(Invited)[J]. Acta Photonica Sinica,2022,51(10):316-339.
|
13 |
MUZYKA K, SUN Jianrui, FEREJA T H,et al. Boron-doped diamond:Current progress and challenges in view of electroanalytical applications[J]. Analytical Methods, 2019, 11(4):397-414. doi: 10.1039/c8ay02197j
|
14 |
|
|
ZHANG Hao, ZENG Yuxin, CUI Jun,et al. Direct electrochemical detection of ammonia in wastewater using boron-doped diamond(BDD) electrode[J]. Chinese Journal of Environmental Engineering, 2021, 15(12):4067-4076. doi: 10.12030/j.cjee.202102033
|
15 |
LYDER A H, LISA D, UTTAM M,et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48):2102693. doi: 10.1002/aenm.202102693
|
16 |
PAN Lujin,OTT S, DIONIGI F,et al. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells[J]. Current Opinion in Electrochemistry, 2019, 18:61-71. doi: 10.1016/j.coelec.2019.10.011
|
17 |
LI Xingsheng, WANG Yumeng, YIN Chengri,et al. Copper nanowires in recent electronic applications:Progress and perspectives[J]. Journal of Materials Chemistry C, 2020, 8(3):849-872. doi: 10.1039/c9tc04744a
|
18 |
WANG Cheng, JIN Liujun, SHANG Hongyuan,et al. Advances in engineering RuO 2 electrocatalysts towards oxygen evolution reaction[J]. Chinese Chemical Letters, 2021, 32(7):2108-2116. doi: 10.1016/j.cclet.2020.11.051
|
19 |
金利通,同威,方禹之. 吸附型化学修饰电极在分析化学中的应用[J]. 分析试验室,1987,6(8):45-49.
|
|
JIN Litong, TONG Wei, FANG Yuzhi. The application of adsorptive type chemically modified electrodes in analytical chemistry[J]. Analytical Laboratory,1987,6(8):45-49.
|
20 |
MARCON L, WANG Mei, COFFINIER Y,et al. Photochemical immobilization of proteins and peptides on benzophenone-terminated boron-doped diamond surfaces[J]. Langmuir, 2010, 26(2):1075-1080. doi: 10.1021/la903012v
|
21 |
COFFINIER Y, SZUNERITS S, JAMA C,et al. Peptide immobilization on amine-terminated boron-doped diamond surfaces[J]. Langmuir, 2007, 23(8):4494-4497. doi: 10.1021/la063440y
|
22 |
WANG Jian, CARLISLE J A. Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films[J]. Diamond and Related Materials, 2006, 15(2/3):279-284. doi: 10.1016/j.diamond.2005.09.017
|
23 |
GENG R, ZHAO G H, LIU M C,et al. A sandwich structured SiO 2/Cytochrome c/SiO 2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor[J]. Biomaterials, 2008, 29(18):2794-2801. doi: 10.1016/j.biomaterials.2008.03.004
|
24 |
WANG Yuning, ZHI Jinfang, LIU Yang,et al. Electrochemical detection of surfactant cetylpyridinium bromide using boron-doped diamond as electrode[J]. Electrochemistry Communications, 2011, 13(1):82-85. doi: 10.1016/j.elecom.2010.11.019
|
25 |
WEI Min, SUN Liguo, XIE Zhuoying,et al. Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids[J]. Advanced Functional Materials, 2008, 18(9):1414-1421. doi: 10.1002/adfm.200701099
|
26 |
LEE S K, SONG M J, KIM J H,et al. Selective growth of carbon nanotubes on boron-doped diamond for electrochemical biosensor application[J]. RSC Advances, 2015, 5(30):23395-23400. doi: 10.1039/c4ra15554h
|
27 |
LEE S K, SONG M J, KIM J H,et al. 3D-networked carbon nanotube/diamond core-shell nanowires for enhanced electrochemical performance[J]. NPG Asia Materials, 2014, 6(7):e115. doi: 10.1038/am.2014.50
|
28 |
WU Jing, QU Yang. Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode[J]. Analytical Bioanalytical Chemistry, 2006, 385(7):1330-1335. doi: 10.1007/s00216-006-0534-y
|
29 |
GARRIDO J A, HERNANDO J, SCHMICH E,et al. Protein-modified nanocrystalline diamond thin films for biosensor applications[J]. Nature materials, 2004, 3(10):736-742. doi: 10.1038/nmat1204
|
30 |
申风婷. 基于BDD的抗坏血酸氧化酶传感器的制备与性能研究[D]. 天津:天津理工大学,2012.
|
|
SHEN Fengting. The preparation and properties of ascorbic acid oxidase biosensor based on BDD[D]. Tianjin:Tianjin University of Technology,2012.
|
31 |
ANNISA T N, SAEPUDIN E, IVANDINI T A. Modification of nitrogen-terminated boron-doped diamond electrodes with gold nanoparticles and hemoglobin for acrylamide biosensors[C]//AIP Conference Proceedings. Bali,Indonesia, 2018:020108. doi: 10.1063/1.5064105
|
32 |
MANAI R, HABCHI M, KAMOUNI-BELGHITI D,et al. Diamond micro-cantilevers as transducers for olfactory receptors-based biosensors:Application to the receptors M71 and OR7D4[J]. Sensors and Actuators B:Chemical, 2017, 238:1199-1206. doi: 10.1016/j.snb.2016.07.013
|
33 |
戴玮. 化学修饰掺硼金刚石薄膜电极检测亚硝酸盐[D]. 天津:天津理工大学,2010.
|
|
DAI Wei. Chemically modified boron-doped diamond thin film electrode detect nitrite[D]. Tianjin:Tianjin University of Technology,2010.
|
34 |
LIU Meichuan, ZHAO Guohua, QI Yuan. Rapid and sensitive amperometric determination of hydrogen peroxide with a biosensor based on a carboxyphenyl functionalised boron-doped diamond electrode[J]. International Journal of Environmental Analytical Chemistry, 2012, 92(5):534-547. doi: 10.1080/03067310903582325
|
35 |
ZEHANI N, FORTGANG P, LACHGAR M S,et al. Highly sensitive electrochemical biosensor for bisphenol a detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film[J]. Biosensors & Biolelctronics, 2015, 74:830-835. doi: 10.1016/j.bios.2015.07.051
|
36 |
LIU Xiaohui, XIE Liangbo, LIU Yigang,et al. Rapid preparation of highly stable ZnO-CeO 2/CF cathode by one-step electro-deposition for efficient degradation of ciprofloxacin in electro-Fenton system[J]. Catalysis Today, 2020, 355:458-465. doi: 10.1016/j.cattod.2019.07.005
|
37 |
|
|
XU Saisheng, ZENG Lei, ZHANG Lifeng,et al. Properties comparison of electrodeposited copper interconncet line by DC and pulse plating[J]. Semiconductor Technology, 2008, 33(12):1070-1073. doi: 10.3969/j.issn.1003-353X.2008.12.006
|
38 |
RYU C, KWON K W, LOKE A L S,et al. Microstructure and reliability of copper interconnects[J]. IEEE Transactions on Electron Devices, 1999, 46(6):1113-1120. doi: 10.1109/16.766872
|
39 |
WALSH F C, WANG Shuncai, ZHOU Nan. The electrodeposition of composite coatings:Diversity,applications and challenges[J]. Current Opinion in Electrochemistry, 2020, 20:8-19. doi: 10.1016/j.coelec.2020.01.011
|
40 |
ZHANG Xuan, WAN Kai, SUBRAMANIAN P,et al. Electrochemical deposition of metal-organic framework films and their applications[J]. Journal of Materials Chemistry A, 2020, 8(16):7569-7587. doi: 10.1039/d0ta00406e
|
41 |
JIA Zhiqian, HAO Shuang, WEN Jianping,et al. Electrochemical fabrication of metal-organic frameworks membranes and films:A review[J]. Microporous and Mesoporous Materials, 2020, 305:110322. doi: 10.1016/j.micromeso.2020.110322
|
42 |
ZHANG Leicong, YU Xuecheng, ZHU Pengli,et al. Laboratory filter paper as a substrate material for flexible supercapacitors[J]. Sustainable Energy & Fuels, 2018, 2(1):147-154. doi: 10.1039/c7se00411g
|
43 |
LIU Liang, MANDLER D. Using nanomaterials as building blocks for electrochemical deposition:A mini review[J]. Electrochemistry Communications, 2020, 120:106830. doi: 10.1016/j.elecom.2020.106830
|
44 |
NANTAPHOL S, CHAILAPAKUL O, SIANGPROH W. A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection[J]. Analytica Chimica Acta, 2015, 891:136-143. doi: 10.1016/j.aca.2015.08.007
|
45 |
PUNGJUNUN K, CHAIYO S, JANTRAHONG I,et al. Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device[J]. Microchimica Acta, 2018, 185(7):324. doi: 10.1007/s00604-018-2821-7
|
46 |
UMAM K, SAEPUDIN E, IVANDINI T A. Preparation of hemoglobin-modified boron-doped diamond for acrylamide biosensors[J]. International Symposium on Current Progress in Functional Materials, 2017, 188:012006. doi: 10.1088/1757-899x/188/1/012006
|
47 |
SONG M J, KIM J H, LEE S K,et al. Fabrication of Pt nanoparticles-decorated CVD diamond electrode for biosensor applications[J]. Analytical Sciences, 2011, 27(10):985-989. doi: 10.2116/analsci.27.985
|
48 |
SONG M J, LEE S K, KIM J H,et al. Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid[J]. Analytical Sciences, 2012, 28(6):583-587. doi: 10.2116/analsci.28.583
|
49 |
ZHU Ruitong, ZHAO Zihua, CAO Jun,et al. Effect of Pt-Ni deposition sequence on the bimetal-modified boron-doped diamond on catalytic performance for glucose oxidation in neutral media[J]. Journal of Electroanalytical Chemistry, 2022, 907:116084. doi: 10.1016/j.jelechem.2022.116084
|
50 |
NANTAPHOL S, WATANABE T, NOMURA N,et al. Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection[J]. Biosensors and Bioelectronics, 2017, 98:76-82. doi: 10.1016/j.bios.2017.06.034
|
51 |
SONG M J, KIM J H, LEE S K,et al. Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit[J]. Microchimica Acta, 2010, 171(3/4):249-255. doi: 10.1007/s00604-010-0432-z
|
52 |
TRAIPOP S, YAKOH A, JAMPASA S,et al. Sequential electrodeposition of Cu-Pt bimetallic nanocatalysts on boron-doped diamond electrodes for the simple and rapid detection of methanol[J]. Scientific Reports, 2021, 11:14354. doi: 10.1038/s41598-021-92769-w
|
53 |
GONG Zhenzhi, HU Naixiu, YE Wentao,et al. High-performance non-enzymatic glucose sensor based on Ni/Cu/boron-doped diamond electrode[J]. Journal of Electroanalytical Chemistry, 2019, 841:135-141. doi: 10.1016/j.jelechem.2019.03.043
|
54 |
YAO Kaili, TAN Xiaojun, DAI Bing,et al. Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection[J]. Journal of Materials Science & Technology, 2020, 49:42-46. doi: 10.1016/j.jmst.2020.02.003
|
55 |
LI Hongji, QIN Junqing, LI Mingji,et al. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor[J]. Sensors and Actuators B:Chemical, 2020, 302:127209. doi: 10.1016/j.snb.2019.127209
|
56 |
STRADIOTTO N, TOGHILL K, XIAO Lei,et al. The fabrication and characterization of a nickel nanoparticle modified boron doped diamond electrode for electrocatalysis of primary alcohol oxidation[J]. Electroanalysis, 2009, 21(24):2627-2633. doi: 10.1002/elan.200900325
|
57 |
TOGHILL K E, XIAO Lei, PHILLIPS M A,et al. The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode[J]. Sensors and Actuators B:Chemical, 2010, 147(2):642-652. doi: 10.1016/j.snb.2010.03.091
|
58 |
HARFIELD J C, TOGHILL K E, BATCHELOR-MCAULEY C,et al. Nickel nanoparticle modified BDD electrode shows an electrocatalytic response to adenine and DNA in aqueous alkaline media[J]. Electroanalysis, 2011, 23(4):931-938. doi: 10.1002/elan.201000658
|
59 |
DAI Wei, LI Mingji, LI Hongji,et al. Amperometric biosensor based on nanoporous nickel/boron-doped diamond film for electroanalysis of L-alanine[J]. Sensors and Actuators B:Chemical, 2014, 201:31-36. doi: 10.1016/j.snb.2014.05.005
|
60 |
DAI Wei, LI Mingji, GAO Sumei,et al. Fabrication of nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor[J]. Electrochimica Acta, 2016, 187:413-421. doi: 10.1016/j.electacta.2015.11.085
|
61 |
DENG Zejun, LONG Hangyu, WEI Qiuping,et al. High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode[J]. Sensors and Actuators B:Chemical, 2017, 242:825-834. doi: 10.1016/j.snb.2016.09.176
|
62 |
LONG Hanyu, LI Can, DENG Zejun,et al. Nickel-encapsulated carbon nanotubes modified boron doped diamond hybrid electrode for non-enzymatic glucose sensing[J]. Journal of the Electrochemical Society, 2018, 165(3):B135-B142. doi: 10.1149/2.0741803jes
|
63 |
LI Can, ZHAO Ting, WEI Qiuping,et al. The effect of heat treatment time on the carbon-coated nickel nanoparticles modified boron-doped diamond composite electrode for non-enzymatic glucose sensing[J]. Journal of Electroanalytical Chemistry, 2019, 841:148-157. doi: 10.1016/j.jelechem.2019.04.023
|
64 |
ZHENG Kuangzhi, LONGN H, WEI Qiuping,et al. Non-enzymatic glucose sensor based on hierarchical Au/Ni/boron-doped diamond heterostructure electrode for improving performances[J]. Journal of the Electrochemical Society, 2019, 166(6):B373-B380. doi: 10.1149/2.0561906jess
|
65 |
CHIA Huiling, MAYORGA-MARTINEZ C C, GUSMÃO R,et al. A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell-gold core nanorod composites[J]. Chemical Communications, 2020, 56(57):7909-7912. doi: 10.1039/d0cc02770g
|
66 |
MAVROKEFALOS C K, NELSON G W, POLL C G,et al. Electrochemical aspects of Pt-Cu and Cu modified boron-doped diamond[J]. Physica Status Solidi(a), 2015, 212(11):2559-2567. doi: 10.1002/pssa.201532163
|
67 |
GAO Qian, ZHANG Wangyang, ZHAO Chaopeng,et al. Laser-engraved boron-doped diamond for copper catalyzed non-enzymatic glucose sensing[J]. Advanced Materials Interfaces, 2022, 9(13):2200034. doi: 10.1002/admi.202200034
|
68 |
WEI Min, LIU Yong, GU Zhongze,et al. Electrochemical detection of catechol on boron-doped diamond electrode modified with Au/TiO 2 nanorod composite[J]. Journal of the Chinese Chemical Society, 2011, 58(4):516-521. doi: 10.1002/jccs.201190015
|
69 |
TOGHILL K, WILDGOOSE G, MOSHAR A,et al. The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium(Ⅱ) and lead(Ⅱ)[J]. Electroanalysis, 2008, 20(16):1731-1737. doi: 10.1002/elan.200804277
|
70 |
CUI Huifang, BAI Yanfeng, WU Wenwen,et al. Modification with mesoporous platinum and poly(pyrrole-3-carboxylic acid)-based copolymer on boron-doped diamond for nonenzymatic sensing of hydrogen peroxide[J]. Journal of Electroanalytical Chemistry, 2016, 766:52-59. doi: 10.1016/j.jelechem.2016.01.026
|
71 |
DAI Wei, LI Hongji, LI Mingji,et al. Electrochemical imprinted polycrystalline nickel-nickel oxide half-nanotube-modified boron-doped diamond electrode for the detection of L-serine[J]. ACS Applied Materials & Interfaces, 2015, 7(41):22858-22867. doi: 10.1021/acsami.5b05642
|
72 |
邹奇. 掺硼金刚石的表面修饰及其电化学应用研究[D]. 秦皇岛:燕山大学,2021.
|
|
ZOU Qi. Surface modification of boron-doped diamond and its electrochemical application[D]. Qinhuangdao:Yanshan University,2021.
|
73 |
马传军,赵慧敏,陈硕,等. Ti/BDD/PbO2复合电极在化学需氧量测定中的应用[J]. 环境工程学报,2012,6(5):1749-1754.
|
|
MA Chuanjun, ZHAO Huimin, CHEN Shuo,et al. Application of Ti/BDD/PbO2 composite electrode in chemical oxygen demand determination[J]. Chinese Journal of Environmental Engineering,2012,6(5):1749-1754.
|
74 |
SHAO Zhiqing. Zirconia modified electrochemical DNA biosensor[J]. Chinese Journal Sensors & Actuators,2011,24:1672-1675.
|
75 |
GAUTIER P, VALLÉE A, ETCHEBERRY A,et al. ZnO electrodeposition on boron-doped diamond:Effects of zinc precursor concentration[J]. ECS Transactions, 2015, 66(6):141-149. doi: 10.1149/06606.0141ecst
|
76 |
ZHAO Jianwen, WU Daohong, ZHI Jinfang. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds[J]. Bioelectrochemistry, 2009, 75(1):44-49. doi: 10.1016/j.bioelechem.2009.01.005
|
77 |
SONG M J, KIM J H, LEE S K,et al. Analytical characteristics of electrochemical biosensor using Pt-dispersed graphene on boron doped diamond electrode[J]. Electroanalysis, 2011, 23(10):2408-2414. doi: 10.1002/elan.201100265
|
78 |
赵凤娟,罗耀,聂冬锐,等. 基于多孔碳球修饰硼掺杂金刚石电极的甲基对硫磷检测[J]. 食品安全质量检测学报,2014,5(11):3419-3424.
|
|
ZHAO Fengjuan, LUO Yao, NIE Dongrui,et al. Determination of methyl parathion based on porous carbon spheres-modified boron-doped diamond electrode[J]. Journal of Food Safety & Quality,2014,5(11):3419-3424.
|
79 |
WEI Min, WANG Jingjing. A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides[J]. Sensors and Actuators B:Chemical, 2015, 211:290-296. doi: 10.1016/j.snb.2015.01.112
|