工业水处理 ›› 2025, Vol. 45 ›› Issue (5): 62-70. doi: 10.19965/j.cnki.iwt.2024-0365

• 试验研究 • 上一篇    下一篇

疏水性p-BN@β-PbO2电极电催化氧化降解盐酸强力霉素

潘云川1(), 王依琳1, 陶姣1, 李莉莹1, 张蕊2, 顾效纲3, 吕学斌1, 熊健1()   

  1. 1. 西藏大学生态环境学院,西藏自治区高原环境工程与污染控制重点实验室,西藏 拉萨 850000
    2. 天津城建大学环境与市政工程学院,天津 300384
    3. 河南城建学院市政与环境工程学院,河南省水体污染防治与修复重点实验室,河南 平顶山 467036
  • 收稿日期:2024-09-09 出版日期:2025-05-20 发布日期:2025-05-22
  • 通讯作者: 熊健
  • 作者简介:

    潘云川(2000— ),硕士,E-mail:

  • 基金资助:
    国家重点研发计划项目(2019YFC1904100); 西藏大学中央支持地方财政项目(2023年1号,2024年1号); 西藏自治区科技计划重点研发计划项目(XZ202101ZY0012G); 河南省水体污染防治与修复重点实验室开放基金项目(CJSZ2024015)

Electrocatalytic degradation of doxycycline hydrochloride by hydrophobic p-BN@β-PbO2 electrode

Yunchuan PAN1(), Yilin WANG1, Jiao TAO1, Liying LI1, Rui ZHANG2, Xiaogang GU3, Xuebin LÜ1, Jian XIONG1()   

  1. 1. Key Laboratory of Environmental Engineering and Pollution Control on the Plateau of Tibet Autonomous Region, School of Ecology and Environment, Tibet University, Lhasa 850000, China
    2. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
    3. Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal & Environment Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
  • Received:2024-09-09 Online:2025-05-20 Published:2025-05-22
  • Contact: Jian XIONG

摘要:

以多孔六方氮化硼(p-BN)和PbO2共掺杂制备具有疏水外层的p-BN@β-PbO2电极,并用于电化学氧化降解盐酸强力霉素(DC)。利用SEM、EDS、XRD表征了电极的形貌及组成,通过LSV、CV和EIS测定了电极的电化学性能,并探讨了电压、DC初始浓度、pH、电解质类型及浓度等因素对DC降解效果的影响,分析了DC的降解机理。结果表明,具有疏水外层修饰的p-BN@β-PbO2电极具有较高的析氧电位,更不容易发生副反应,对污染物的降解属于间接氧化,且10% p-BN@β-PbO2电极的电化学活性面积和电催化活性最高。p-BN@β-PbO2电极降解DC的最佳条件为有疏水外层、10% p-BN掺杂量、DC初始质量浓度30 mg/L、pH=4.69、电压10 V、电解质NaCl浓度0.05 mol/L等,120 min时DC降解率最高可达96.29%。经8次循环使用,10% p-BN@β-PbO2电极仍能保持超过83.60%的DC降解率,且Pb元素溶出量较低。HPLC-MS技术证实该电极系统产生的活性物质(如·OH和活性氯物种)能高效攻击DC分子中的—NH2支链和苯环上的C ̿      C双键,导致共轭结构被破坏和逐步分解,最终实现DC的快速降解。

关键词: 电催化, 盐酸强力霉素, 多孔六方氮化硼, β-PbO2电极

Abstract:

A p-BN@β-PbO2 electrode with a hydrophobic outer layer was prepared by co-doping porous hexagonal boron nitride(p-BN) and PbO2, and used for electrochemical oxidation degradation of doxycycline hydrochloride(DC). The morphology and composition of the electrode were characterized by SEM, EDS, and XRD. The electrochemical performance of the electrode was determined by LSV, CV, and EIS. The effects of voltage, initial DC concentration, pH, electrolyte type and concentration on DC degradation were analyzed, and DC degradation mechanism was studied. The results showed that p-BN@β-PbO2 electrode with hydrophobic outer layer modification had a higher oxygen evolution potential and was less prone to side reactions. The degradation of pollutants belonged to indirect oxidation. The 10% p-BN@β-PbO2 electrode had the highest electrochemical active area and electrocatalytic activity. The optimal conditions for DC degradation by p-BN@β-PbO2 electrode were the presence of a hydrophobic outer layer, 10% p-BN doping, initial DC concentration of 30 mg/L, pH=4.69, voltage of 10 V and electrolyte NaCl concentration of 0.05 mol/L. The highest DC degradation rate could reach 96.29% after 120 minutes. After 8 cycles of use, 10% p-BN@β-PbO2 electrode still maintained DC degradation rate of over 83.60%, and the leaching amount of Pb element was relatively low. HPLC-MS technology confirmed that the active substances generated by the electrode system, such as ·OH and active chlorine species, could efficiently attack —NH2 branch in DC molecules and C ̿      C double bond on the benzene ring, causing the conjugated structure to be destroyed and gradually decomposed, ultimately achieving rapid degradation of DC.

Key words: electrocatalysis, doxycycline hydrochloride, porous hexagonal boron nitride, β-PbO2 electrode

中图分类号: