1 |
CHAI W S, CHEUN J Y, KUMAR P S,et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 2021, 296:126589. doi: 10.1016/j.jclepro.2021.126589
|
2 |
HUANG Jinhui, YUAN Fang, ZENG Guangming,et al. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration[J]. Chemosphere, 2017, 173:199-206. doi: 10.1016/j.chemosphere.2016.12.137
|
3 |
SYUKOR A R A, SULAIMAN S, SIDDIQUE M N I,et al. Integration of phytogreen for heavy metal removal from wastewater[J]. Journal of Cleaner Production, 2016, 112:3124-3131. doi: 10.1016/j.jclepro.2015.10.103
|
4 |
ZHU Yong, BAI Zhishan, WANG Hualin. Microfluidic synthesis of thiourea modified chitosan microsphere of high specific surface area for heavy metal wastewater treatment[J]. Chinese Chemical Letters, 2017, 28(3):633-641. doi: 10.1016/j.cclet.2016.10.031
|
5 |
SHEN Minxian, HUANG Zhujian, LUO Xuewen,et al. Activation of persulfate for tetracycline degradation using the catalyst regenerated from Fenton sludge containing heavy metal:Synergistic effect of Cu for catalysis[J]. Chemical Engineering Journal, 2020, 396:125238. doi: 10.1016/j.cej.2020.125238
|
6 |
XU Yaolei, CHEN Jinyi, CHEN Ran,et al. Adsorption and reduction of chromium(Ⅵ) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent[J]. Water Research, 2019, 160:148-157. doi: 10.1016/j.watres.2019.05.055
|
7 |
AL-OTHMAN Z A,ALI R, AL-OTHMAN A M,et al. Assessment of toxic metals in wheat crops grown on selected soils,irrigated by different water sources[J]. Arabian Journal of Chemistry, 2016, 9:S1555-S1562. doi: 10.1016/j.arabjc.2012.04.006
|
8 |
YUAN Yongqiang, XIANG Meng, LIU Congqiang,et al. Chronic impact of an accidental wastewater spill from a smelter,China:A study of health risk of heavy metal(loid)s via vegetable intake[J]. Ecotoxicology and Environmental Safety, 2019, 182:109401. doi: 10.1016/j.ecoenv.2019.109401
|
9 |
XU Yi, WANG Chao, HOU Jun,et al. Application of zero valent iron coupling with biological process for wastewater treatment:A review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4):667-693. doi: 10.1007/s11157-017-9445-y
|
10 |
CRINI G, LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1):145-155. doi: 10.1007/s10311-018-0785-9
|
11 |
LI Tong, XIAO Ke, YANG Bo,et al. Recovery of Ni(Ⅱ) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6):1-12. doi: 10.1007/s11783-019-1175-7
|
12 |
SHRESTHA R, BAN S, DEVKOTA S,et al. Technological trends in heavy metals removal from industrial wastewater:A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105688. doi: 10.1016/j.jece.2021.105688
|
13 |
WANG Zhongbing, XU Wenbin, Fanghui JIE,et al. The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater[J]. Scientific Reports, 2021, 11:16878. doi: 10.1038/s41598-021-96465-7
|
14 |
RASHID R, SHAFIQ I, AKHTER P,et al. A state-of-the-art review on wastewater treatment techniques:The effectiveness of adsorption method[J]. Environmental Science and Pollution Research International, 2021, 28(8):9050-9066. doi: 10.1007/s11356-021-12395-x
|
15 |
DE GISI S, LOFRANO G, GRASSI M,et al. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment:A review[J]. Sustainable Materials and Technologies, 2016, 9:10-40. doi: 10.1016/j.susmat.2016.06.002
|
16 |
JAIN C K, MALIK D S, YADAV A K. Applicability of plant based biosorbents in the removal of heavy metals:A review[J]. Environmental Processes, 2016, 3(2):495-523. doi: 10.1007/s40710-016-0143-5
|
17 |
BAKAR N A, OTHMAN N, YUNUS Z M,et al. An insight review of lignocellulosic materials as activated carbon precursor for textile wastewater treatment[J]. Environmental Technology & Innovation, 2021, 22:101445. doi: 10.1016/j.eti.2021.101445
|
18 |
DIGNOS E G, GABEJAN K A, OLEGARIO-SANCHEZ E M,et al. The comparison of the alkali-treated and acid-treated naturally mined Philippine zeolite for adsorption of heavy metals in highly polluted waters[J]. IOP Conference Series:Materials Science and Engineering, 2019, 478:012030. doi: 10.1088/1757-899x/478/1/012030
|
19 |
VERMA B, BALOMAJUMDER C. Magnetic magnesium ferrite-doped multi-walled carbon nanotubes:An advanced treatment of chromium-containing wastewater[J]. Environmental Science and Pollution Research International, 2020, 27(12):13844-13854. doi: 10.1007/s11356-020-07988-x
|
20 |
LI Qiuju, YANG Fanxi, ZHANG Jixin,et al. Magnetic Fe 3O 4/MnO 2 core-shell nano-composite for removal of heavy metals from wastewater[J]. SN Applied Sciences, 2020, 2(8):1375. doi: 10.1007/s42452-020-3182-5
|
21 |
LI Yuanling, YU Han, LIU Li’na,et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021, 420:126655. doi: 10.1016/j.jhazmat.2021.126655
|
22 |
HU Hui, ZHANG Jiayuan, WANG Tian,et al. Adsorption of toxic metal ion in agricultural wastewater by torrefaction biochar from bamboo shoot shell[J]. Journal of Cleaner Production, 2022, 338:130558. doi: 10.1016/j.jclepro.2022.130558
|
23 |
ISLAM M S, KWAK J H, NZEDIEGWU C,et al. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas[J]. Environmental Pollution, 2021, 281:117094. doi: 10.1016/j.envpol.2021.117094
|
24 |
江来,吴棒,郭欣,等. 生物炭应用于修复重金属污染的湖泊底泥[J]. 水处理技术,2022,48(4):24-29.
|
|
JIANG Lai, WU Bang, GUO Xin,et al. Application of biochar in remediation of lake sediment polluted by heavy metal[J]. Technology of Water Treatment,2022,48(4):24-29.
|
25 |
李旭,季宏兵,张言,等. 不同制备温度下水生植物生物炭吸附Cd2+研究[J]. 水处理技术,2019,45(9):68-73.
|
|
LI Xu, JI Hongbing, ZHANG Yan,et al. Adsorption characteristics and mechanism of Cd2+ on biochar with different pyrolysis temperatures produced from hydrophyte[J]. Technology of Water Treatment,2019,45(9):68-73.
|
26 |
|
|
HE Minjie, ZHANG Jie, CHEN Kexin,et al. Preparation of KMnO 4 modified cotton seed hull biochar and its adsorption performance for lead[J]. Industrial Water Treatment, 2021, 41(6):202-206. doi: 10.11894/iwt.2020-0841
|
27 |
陈佼,刘欢,刘浩霖,等. 生物炭对阳离子染料的吸附性能研究进展[J]. 工业水处理,2022,42(8):27-33.
|
|
CHEN Jiao, LIU Huan, LIU Haolin,et al. Research progress on the adsorption property of biochar for cationic dyes[J]. Industrial Water Treatment,2022,42(8):27-33.
|
28 |
TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis:A review[J]. Renewable and Sustainable Energy Reviews, 2016, 55:467-481. doi: 10.1016/j.rser.2015.10.122
|
29 |
ZHANG Yaning, CHEN P, LIU Shiyu,et al. Effects of feedstock characteristics on microwave-assisted pyrolysis: A review[J]. Bioresource Technology, 2017, 230:143-151. doi: 10.1016/j.biortech.2017.01.046
|
30 |
XIAO Lingping, SHI Zhengjun, XU Feng,et al. Hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2012, 118:619-623. doi: 10.1016/j.biortech.2012.05.060
|
31 |
LIEW R K, NAM W L, CHONG M Y,et al. Oil palm waste:An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications[J]. Process Safety and Environmental Protection, 2018, 115:57-69. doi: 10.1016/j.psep.2017.10.005
|
32 |
NORAINI M N, ABDULLAH E C, OTHMAN R,et al. Single-route synthesis of magnetic biochar from sugarcane bagasse by microwave-assisted pyrolysis[J]. Materials Letters, 2016, 184:315-319. doi: 10.1016/j.matlet.2016.08.064
|
33 |
LI Jing, DAI Jianjun, LIU Guangqing,et al. Biochar from microwave pyrolysis of biomass:A review[J]. Biomass and Bioenergy, 2016, 94:228-244. doi: 10.1016/j.biombioe.2016.09.010
|
34 |
ZHOU Nan, CHEN Honggang, XI Junting,et al. Biochars with excellent Pb(Ⅱ) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology, 2017, 232:204-210. doi: 10.1016/j.biortech.2017.01.074
|
35 |
WANG Junrui, WAN Feng, Qiufeng LÜ,et al. Self-nitrogen-doped porous biochar derived from kapok(Ceiba insignis) fibers:Effect of pyrolysis temperature and high electrochemical performance[J]. Journal of Materials Science & Technology, 2018, 34(10):1959-1968. doi: 10.1016/j.jmst.2018.01.005
|
36 |
DINESHKUMAR M, MEERA SHERIFFA BEGUM K M, SHRIKAR B,et al. Synthesis and characterization study of solid carbon biocatalyst produced from novel biomass char in a microwave pyrolysis[J]. Materials Today:Proceedings, 2021, 46:9814-9819. doi: 10.1016/j.matpr.2020.10.885
|
37 |
YAASHIKAA P R, SENTHIL KUMAR P, VARJANI S J,et al. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants[J]. Bioresource Technology, 2019, 292:122030. doi: 10.1016/j.biortech.2019.122030
|
38 |
PRASANNAMEDHA G, KUMAR P S, MEHALA R,et al. Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse[J]. Journal of Hazardous Materials, 2021, 407:124825. doi: 10.1016/j.jhazmat.2020.124825
|
39 |
QIU Bingbing, TAO Xuedong, WANG Hao,et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal:A review[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155:105081. doi: 10.1016/j.jaap.2021.105081
|
40 |
魏忠平,朱永乐,赵楚峒,等. 生物炭吸附重金属机理及其应用技术研究进展[J]. 土壤通报,2020,51(3):741-747.
|
|
WEI Zhongping, ZHU Yongle, ZHAO Chutong,et al. Research advances on biochar adsorption mechanism for heavy metals and its application technology[J]. Chinese Journal of Soil Science,2020,51(3):741-747.
|
41 |
高文慧,叶菁,刘朋虎,等. 农业废弃物生物质炭化技术及其应用进展[J]. 亚热带农业研究,2019,15(4):279-284.
|
|
GAO Wenhui, YE Jing, LIU Penghu,et al. Reviews on the application of carbonization technology of agricultural waste biomass[J]. Subtropical Agriculture Research,2019,15(4):279-284.
|
42 |
MAHDI Z, YU Q J, HANANDEH A EL. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar[J]. Journal of Environmental Chemical Engineering, 2018, 6(1):1171-1181. doi: 10.1016/j.jece.2018.01.021
|
43 |
SHAN Rui, SHI Yueyue, GU Jing,et al. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems[J]. Chinese Journal of Chemical Engineering, 2020, 28(5):1375-1383. doi: 10.1016/j.cjche.2020.02.012
|
44 |
KWAK J H, ISLAM M S, WANG Siyuan,et al. Biochar properties and lead(Ⅱ) adsorption capacity depend on feedstock type,pyrolysis temperature,and steam activation[J]. Chemosphere, 2019, 231:393-404. doi: 10.1016/j.chemosphere.2019.05.128
|
45 |
KOMNITSAS K, ZAHARAKI D, PYLIOTIS I,et al. Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals[J]. Waste and Biomass Valorization, 2015, 6(5):805-816. doi: 10.1007/s12649-015-9364-5
|
46 |
ZHAO Man, DAI Yuan, ZHANG Miaoyue,et al. Mechanisms of Pb and/or Zn adsorption by different biochars:Biochar characteristics,stability,and binding energies[J]. Science of the Total Environment, 2020, 717:136894. doi: 10.1016/j.scitotenv.2020.136894
|
47 |
万顺利,李燕,陈卫旸,等. 硝酸酸化生物炭强化去除水中Pb(Ⅱ)和Cd(Ⅱ)的特性[J]. 工业水处理,2021,41(8):58-64.
|
|
WAN Shunli, LI Yan, CHEN Weiyang,et al. Enhanced removal of Pb(Ⅱ) and Cd(Ⅱ)from water by nitric acid treated biochar[J]. Industrial Water Treatment,2021,41(8):58-64.
|
48 |
|
|
PU Shengyan, HE Lingling, LIU Shibin. Review on the preparation of biochar composites and its applications in wastewater treatment[J]. Industrial Water Treatment, 2019, 39(9):1-7. doi: 10.11894/iwt.2019-0390
|
49 |
QIU Yue, ZHANG Qian, LI Meng,et al. Adsorption of Cd(Ⅱ) from aqueous solutions by modified biochars:Comparison of modification methods[J]. Water,Air,& Soil Pollution, 2019, 230(4):1-11. doi: 10.1007/s11270-019-4135-8
|
50 |
LIU Shichao, XIE Zhonglei, ZHU Yintao,et al. Adsorption characteristics of modified rice straw biochar for Zn and in situ remediation of Zn contaminated soil[J]. Environmental Technology & Innovation, 2021, 22:101388. doi: 10.1016/j.eti.2021.101388
|
51 |
TAN Guangcai, SUN Weiling, XU Yaru,et al. Sorption of mercury(Ⅱ) and atrazine by biochar,modified biochars and biochar based activated carbon in aqueous solution[J]. Bioresource Technology, 2016, 211:727-735. doi: 10.1016/j.biortech.2016.03.147
|
52 |
GAO Ruili, FU Qingling, HU Hongqing,et al. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate[J]. Journal of Hazardous Materials, 2019, 371:191-197. doi: 10.1016/j.jhazmat.2019.02.079
|
53 |
LI Yan, GAO Liangmin, LU Zhongxiang,et al. Enhanced removal of heavy metals from water by hydrous ferric oxide-modified biochar[J]. ACS Omega, 2020, 5(44):28702-28711. doi: 10.1021/acsomega.0c03893
|
54 |
WANG Kun, SUN Yuebing, TANG Jingchun,et al. Aqueous Cr(Ⅵ) removal by a novel ball milled Fe 0-biochar composite:Role of biochar electron transfer capacity under high pyrolysis temperature[J]. Chemosphere, 2020, 241:125044. doi: 10.1016/j.chemosphere.2019.125044
|
55 |
Honghong LÜ, GAO Bin, HE Feng,et al. Effects of ball milling on the physicochemical and sorptive properties of biochar:Experimental observations and governing mechanisms[J]. Environmental Pollution, 2018, 233:54-63. doi: 10.1016/j.envpol.2017.10.037
|
56 |
HU Rui, XIAO Jiang, WANG Tianhui,et al. Highly concentrated amino-modified biochars using a plasma:Evolution of surface composition and porosity for heavy metal capture[J]. Carbon, 2020, 168:515-527. doi: 10.1016/j.carbon.2020.07.012
|
57 |
|
|
JIANG Zonghong, CHEN Miao, LI Xinqing,et al. Research progress on the removal of antibiotics in water by modified biochar[J]. Environmental Chemistry, 2021, 40(12):3846-3860. doi: 10.7524/j.issn.0254-6108.2020080202
|
58 |
MAHDI Z, HANANDEH A EL, YU Q J. Preparation,characterization and application of surface modified biochar from date seed for improved lead,copper,and nickel removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2019, 7(5):103379. doi: 10.1016/j.jece.2019.103379
|
59 |
AHMED W, MEHMOOD S, NÚÑEZ-DELGADO A,et al. Enhanced adsorption of aqueous Pb(Ⅱ) by modified biochar produced through pyrolysis of watermelon seeds[J]. Science of the Total Environment, 2021, 784:147136. doi: 10.1016/j.scitotenv.2021.147136
|
60 |
CAI Weiquan, WEI Jiahao, LI Zhonglei,et al. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(Ⅵ) by a mild one-step hydrothermal method from peanut hull[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 563:102-111. doi: 10.1016/j.colsurfa.2018.11.062
|
61 |
LI Changjing, ZHANG Lei, GAO Yuan,et al. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(Ⅱ),Cu(Ⅱ) and Cr(Ⅵ) removals[J]. Waste Management, 2018, 79:625-637. doi: 10.1016/j.wasman.2018.08.035
|
62 |
ZHANG Huiyan, YUE Xiupeng, LI Fei,et al. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. Science of the Total Environment, 2018, 631/632:795-802. doi: 10.1016/j.scitotenv.2018.03.071
|
63 |
|
|
ZHU Yintao, LI Yedong, WANG Mingyu,et al. Adsorption characteristics of biochar prepared by corn stalk alkalization on zinc[J]. Journal of Agro-Environment Science, 2018, 37(1):179-185. doi: 10.11654/jaes.2017-0917
|
64 |
张奎,王雪梅,李玉环,等. 硫改性牛粪生物炭对Hg2+的高效吸附及其机理[J]. 环境工程,2022,40(4):79-88.
|
|
ZHANG Kui, WANG Xuemei, LI Yuhuan,et al. High efficiency adsorption of Hg2+ by sulfur-modified cow manure biochar and its mechanism[J]. Environmental Engineering,2022,40(4):79-88.
|
65 |
LI Hongbo, DONG Xiaoling, SILVA E B DA,et al. Mechanisms of metal sorption by biochars:Biochar characteristics and modifications[J]. Chemosphere, 2017, 178:466-478. doi: 10.1016/j.chemosphere.2017.03.072
|
66 |
CHIN J F, HENG Z W, TEOH H C,et al. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater:Modification,application and mechanism[J]. Chemosphere, 2022, 291:133035. doi: 10.1016/j.chemosphere.2021.133035
|
67 |
WANG Zengzhen, XU Jia, YELLEZUOME D,et al. Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb(Ⅱ) adsorption properties in aqueous solutions[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157:105214. doi: 10.1016/j.jaap.2021.105214
|
68 |
GUO Shasha, WANG Yancheng, WEI Xingneng,et al. Structural analysis and heavy metal adsorption of N-doped biochar from hydrothermal carbonization of camellia sinensis waste[J]. Environmental Science and Pollution Research International, 2020, 27(15):18866-18874. doi: 10.1007/s11356-020-08455-3
|
69 |
AHMARUZZAMAN M, SHARMA D K. Adsorption of phenols from wastewater[J]. Journal of Colloid and Interface Science, 2005, 287(1):14-24. doi: 10.1016/j.jcis.2005.01.075
|
70 |
CHEN S, ZHONG M, WANG H,et al. Study on adsorption of Cu 2+,Pb 2+,Cd 2+,and Zn 2+ by the KMnO 4 modified biochar derived from walnut shell[J]. International Journal of Environmental Science and Technology, 2022:1-18. doi: 10.1007/s13762-022-04002-4
|
71 |
CUI Limei, WANG Yaoguang, GAO Liang,et al. EDTA functionalized magnetic graphene oxide for removal of Pb(Ⅱ),Hg(Ⅱ) and Cu(Ⅱ) in water treatment:Adsorption mechanism and separation property[J]. Chemical Engineering Journal, 2015, 281:1-10. doi: 10.1016/j.cej.2015.06.043
|
72 |
PENG Weijun, LI Hongqiang, LIU Yanyan,et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 2017, 230:496-504. doi: 10.1016/j.molliq.2017.01.064
|
73 |
ZHANG Ailin, LI Xin, XING Jia,et al. Adsorption of potentially toxic elements in water by modified biochar:A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):104196. doi: 10.1016/j.jece.2020.104196
|
74 |
GHOLIZADEH M, HU Xun. Removal of heavy metals from soil with biochar composite:A critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105830. doi: 10.1016/j.jece.2021.105830
|
75 |
|
|
TIAN Farong, GAO Jiali, ZHU Zhoucaixia,et al. Progress on treatment of acid mine drainage by biochar technology[J]. Environmental Chemistry, 2022, 41(8):2712-2728. doi: 10.7524/j.issn.0254-6108.2021042004
|
76 |
|
|
HAN Lujia, LI Yanfei, LIU Xian,et al. Review of biochar as adsorbent for aqueous heavy metal removal[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11):1-11. doi: 10.6041/j.issn.1000-1298.2017.11.001
|
77 |
|
|
WANG Yao, MEI Xiangyang, DUAN Zhengyang,et al. Advances in adsorption of heavy metals ions by biochar and its composites[J]. Materials Review, 2017, 31(19):135-143. doi: 10.11896/j.issn.1005-023X.2017.019.019
|
78 |
|
|
LI Shiyou, HU Zhongqing, CHEN Qin,et al. Adsorption effect of modified biochar on the heavy metals in wastewater[J]. Industrial Water Treatment, 2018, 38(7):7-12. doi: 10.11894/1005-829x.2018.38(7).007
|
79 |
WU Jiawen, WANG Tao, WANG Jiawei,et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar:Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754:142150. doi: 10.1016/j.scitotenv.2020.142150
|