1 |
孙占学,刘金辉,刘亚洁,等. 硬岩铀矿生物堆浸研究进展[J]. 中国矿业,2012,21(S1):422-423.
|
|
SUN Zhanxue, LIU Jinhui, LIU Yajie,et al. Latest development in uranium bio-heap leaching of hard rock-type uranium ores in China[J]. China Mining Magazine,2012,21(S1):422-423.
|
2 |
|
|
ZHOU Yipeng, SHEN Zhaoli, SHI Weijun,et al. Discussion on technology classification of in situ leaching uranium mining[J]. Nonferrous Metals:Extractive Metallurgy, 2015(1):37-41. doi: 10.3969/j.issn.1007-7545.2015.01.010
|
3 |
|
|
ZHOU Yipeng, SHEN Zhaoli, HE Jiangtao,et al. Bioleaching of uranium ore from sand-type uranium deposit[J]. Nonferrous Metals:Extractive Metallurgy, 2014(10):54-56. doi: 10.3969/j.issn.1007-7545.2014.10.013
|
4 |
魏小辉. 耐冷嗜酸硫杆菌氧化机理及其在酸法地浸采铀中的应用[D]. 衡阳:南华大学,2021.
|
5 |
雷宗宇. 酸法地浸终采残留液对某砂岩铀矿浸出性能研究[D]. 衡阳:南华大学,2020.
|
6 |
刘红静. 511矿床地浸采铀末期溶浸方法的研究[D]. 抚州:东华理工大学,2018.
|
7 |
肖志海. 碳酸盐型铀矿石堆浸技术室内浸出实验研究[D]. 衡阳:南华大学,2017.
|
8 |
吉宏斌. 蒙其古尔铀矿床CO2+O2地浸过程中铀的浸出及溶质迁移机理研究[D]. 抚州:东华理工大学,2019.
|
9 |
|
10 |
MARSHALL T A, MORRIS K, LAW G T,et al. Incorporation of uranium into hematite during crystallization from ferrihydrite[J]. Environmental Science & Technology, 2014, 48(7):3724-3731. doi: 10.1021/es500212a
|
11 |
SINGH D K, HAREENDRAN K N,T S,et al. Development of a phosphate precipitation method for the recovery of uranium from lean tenor alkaline leach liquor[J]. Hydrometallurgy, 2017, 171:228-235. doi: 10.1016/j.hydromet.2017.05.021
|
12 |
ZHU Yuling, ZHENG Cong, WU Siying,et al. Interaction of Eu(Ⅲ) on magnetic biochar investigated by batch,spectroscopic and modeling techniques[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316(3):1337-1346. doi: 10.1007/s10967-018-5839-8
|
13 |
MANOS M J, KANATZIDIS M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39):16441-16446. doi: 10.1021/ja308028n
|
14 |
ZHU Kairuo, CHEN Changlun, WANG Haiyan,et al. Gamma-ferric oxide nanoparticles decoration onto porous layered double oxide belts for efficient removal of uranyl[J]. Journal of Colloid and Interface Science, 2019, 535:265-275. doi: 10.1016/j.jcis.2018.10.005
|
15 |
Zhimin LÜ, WANG Haiyan, CHEN Changlun,et al. Enhanced removal of uranium(Ⅵ) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent[J]. Journal of Colloid and Interface Science, 2019, 537:A1-A10. doi: 10.1016/j.jcis.2018.11.062
|
16 |
WANG Xiangxue, FAN Qiaohui, YU Shujun,et al. RETRACTED:High sorption of U(Ⅵ) on graphene oxides studied by batch experimental and theoretical calculations[J]. Chemical Engineering Journal, 2016, 287:448-455. doi: 10.1016/j.cej.2015.11.066
|
17 |
STYLO M, ALESSI D S, SHAO P P,et al. Biogeochemical controls on the product of microbial U(Ⅵ) reduction[J]. Environmental Science & Technology, 2013, 47(21):12351-12358. doi: 10.1021/es402631w
|
18 |
SHEN Junjie, SCHÄFER A. Removal of fluoride and uranium by nanofiltration and reverse osmosis:A review[J]. Chemosphere, 2014, 117:679-691. doi: 10.1016/j.chemosphere.2014.09.090
|
19 |
RINGWOOD A E, OVERSBY V M, KESSON S E,et al. Immobilization of high-level nuclear reactor wastes in SYNROC:A current appraisal[J]. Nuclear and Chemical Waste Management, 1981, 2(4):287-305. doi: 10.1016/0191-815x(81)90055-3
|
20 |
ZHANG Hongsen, LIU Qi, WANG Jun,et al. Preparation of magnetic calcium silicate hydrate for the efficient removal of uranium from aqueous systems[J]. RSC Advances, 2015, 5(8):5904-5912. doi: 10.1039/c4ra08678c
|
21 |
PAPYNOV E K, PORTNYAGIN A S, CHEREDNICHENKO A I,et al. Uranium sorption on reduced porous iron oxides[J]. Doklady Physical Chemistry, 2016, 468(1):67-71. doi: 10.1134/s001250161605002x
|
22 |
HAGAG M S. Comparative study of fabricated composites based on phosphogypsum and Al-hydroxide for uranium separation from aqueous and waste solutions[J]. International Journal of Environmental Analytical Chemistry,2019,101:680-701.
|
23 |
SINGH D K, HAREENDRAN K N,T S,et al. Development of a phosphate precipitation method for the recovery of uranium from lean tenor alkaline leach liquor[J]. Hydrometallurgy, 2017, 171:228-235. doi: 10.1016/j.hydromet.2017.05.021
|
24 |
FAN Fangli, QIN Zhi, BAI Jing,et al. Rapid removal of uranium from aqueous solutions using magnetic Fe 3O 4@SiO 2 composite particles[J]. Journal of Environmental Radioactivity, 2012, 106:40-46. doi: 10.1016/j.jenvrad.2011.11.003
|
25 |
SONG Wencheng, LIU Mancheng, HU Rui,et al. Water-soluble polyacrylamide coated-Fe 3O 4 magnetic composites for high-efficient enrichment of U(Ⅵ) from radioactive wastewater[J]. Chemical Engineering Journal, 2014, 246:268-276. doi: 10.1016/j.cej.2014.02.101
|
26 |
SESHADRI B, BOLAN N S, CHOPPALA G,et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184:197-206. doi: 10.1016/j.chemosphere.2017.05.172
|
27 |
周平,王志麟,许颜正,等. 磷酸体系中铀酰发光衰减的研究[J]. 核化学与放射化学,1993,15(4):198-202.
|
|
ZHOU Ping, WANG Zhilin, XU Yanzheng,et al. Study of uranyl luminescence decay in phosphoric acid solution[J]. Journal of Nuclear and Radiochemistry,1993,15(4):198-202.
|
28 |
|
|
CHENG Rong, WANG Jianlong, ZHANG Weixian. The research progress on degradation of halogenated organic compounds by nano iron[J]. Progress in Chemistry, 2006, 18(1):93-99. doi: 10.3321/j.issn:1005-281X.2006.01.014
|
29 |
YAN Weile, LIEN H L, KOEL B E,et al. Iron nanoparticles for environmental clean-up:Recent developments and future outlook[J]. Environmental Science. Processes & Impacts, 2013, 15(1):63-77. doi: 10.1039/c2em30691c
|
30 |
HOCH L B, MACK E J, HYDUTSKY B W,et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology, 2008, 42(7):2600-2605. doi: 10.1021/es702589u
|
31 |
CHEN S S, HSU H D, LI Chiwang. A new method to produce nanoscale iron for nitrate removal[J]. Journal of Nanoparticle Research, 2004, 6(6):639-647. doi: 10.1007/s11051-004-6672-2
|
32 |
DAS R, VECITIS C D, SCHULZE A,et al. Recent advances in nanomaterials for water protection and monitoring[J]. Chemical Society Reviews, 2017, 46(22):6946-7020. doi: 10.1039/c6cs00921b
|
33 |
JING C, LI Y L, LANDSBERGER S. Review of soluble uranium removal by nanoscale zero valent iron[J]. Journal of Environmental Radioactivity, 2016, 164:65-72. doi: 10.1016/j.jenvrad.2016.06.027
|
34 |
YAN Sen, CHEN Yongheng, XIANG Wu,et al. Uranium(Ⅵ) reduction by nanoscale zero-valent iron in anoxic batch systems:The role of Fe(Ⅱ) and Fe(Ⅲ)[J]. Chemosphere, 2014, 117:625-630. doi: 10.1016/j.chemosphere.2014.09.087
|
35 |
|
|
WAN Xiaogang, YANG Shengya. U(Ⅵ) removal from wastewater by nanoscale zero-valent iron reduction precipitation method[J]. Industrial Water Treatment, 2012, 32(3):42-44. doi: 10.11894/1005-829x.2012.32(3).42
|
36 |
ZHAO Xiao, LIU Wen, CAI Zhengqing,et al. Reductive immobilization of uranium by stabilized zero-valent iron nanoparticles:Effects of stabilizers,water chemistry and long-term stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 604:125315. doi: 10.1016/j.colsurfa.2020.125315
|
37 |
ZHANG Zhibin, LIU Jun, CAO Xiaohong,et al. Comparison of U(Ⅵ) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(Ⅵ)-CO 3/Ca-U(Ⅵ)-CO 3 complexes[J]. Journal of Hazardous Materials, 2015, 300:633-642. doi: 10.1016/j.jhazmat.2015.07.058
|
38 |
POPESCU(HOŞTUC) I C, FILIP P, HUMELNICU D,et al. Removal of uranium(Ⅵ) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose[J]. Journal of Nuclear Materials, 2013, 443(1/2/3):250-255. doi: 10.1016/j.jnucmat.2013.07.018
|
39 |
YANG Dejuan J, ZHANG Lifang, XU Liang,et al. Fabrication and characterization of hydrophilic electrospun membranes made from the block copolymer of poly(ethylene glycol-co-lactide)[J]. Journal of Biomedical Materials Research. Part A, 2007, 82(3):680-688. doi: 10.1002/jbm.a.31099
|
40 |
|
|
LIU Daqian, LIU Zhirong, WANG Changfu,et al. Removal of U(Ⅵ) from aqueous solution using nanoscale zero-valent iron supported on activated carbon[J]. Journal of Synthetic Crystals, 2016, 45(5):1328-1334. doi: 10.3969/j.issn.1000-985X.2016.05.032
|
41 |
SHENG G, SHAO X, LI Y,et al. Enhanced removal of uranium(Ⅵ) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism[J]. The Journal of Physical Chemistry. A, 2014, 118(16):2952-2958. doi: 10.1021/jp412404w
|
42 |
XU Jiali, LI Yilian, JING Chen,et al. Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1):329-336. doi: 10.1007/s10967-013-2779-1
|
43 |
SHENG Guodong, YANG Pengjie, TANG Yanna,et al. New insights into the primary roles of diatomite in the enhanced sequestration of UO 2 2+ by zerovalent iron nanoparticles:An advanced approach utilizing XPS and EXAFS[J]. Applied Catalysis B:Environmental, 2016, 193:189-197. doi: 10.1016/j.apcatb.2016.04.035
|
44 |
MUELLER N C, BRAUN J, BRUNS J,et al. Application of nanoscale zero valent iron(nZVI) for groundwater remediation in Europe[J]. Environmental Science and Pollution Research International, 2012, 19(2):550-558. doi: 10.1007/s11356-011-0576-3
|
45 |
王国建,刘琳. 功能高分子材料[M]. 上海:同济大学出版社,2010:79-94.
|
46 |
HE Wenya, AI Kelong, REN Xiaoyan,et al. Inorganic layered ion-exchangers for decontamination of toxic metal ions in aquatic systems[J]. Journal of Materials Chemistry A, 2017, 5(37):19593-19606. doi: 10.1039/c7ta05076c
|
47 |
SARMA D, MALLIAKAS C D, SUBRAHMANYAM K S,et al. K 2 x Sn 4- x S 8- x ( x=0.65~1):A new metal sulfide for rapid and selective removal of Cs +,Sr 2+ and UO 2 2+ ions[J]. Chemical Science, 2016, 7(2):1121-1132. doi: 10.1039/c5sc03040d
|
48 |
MANOS M J, KANATZIDIS M G. Metal sulfide ion exchangers:Superior sorbents for the capture of toxic and nuclear waste-related metal ions[J]. Chemical Science, 2016, 7(8):4804-4824. doi: 10.1039/c6sc01039c
|
49 |
ILAIYARAJA P, SINGHA DEB A K, SIVASUBRAMANIAN K,et al. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene[J]. Journal of Hazardous Materials, 2013, 250/251:155-166. doi: 10.1016/j.jhazmat.2013.01.040
|
50 |
TOMALIA D A, BAKER H, DEWALD J,et al. A new class of polymers:Starburst-dendritic macromolecules[J]. Polymer Journal, 1985, 17(1):117-132. doi: 10.1295/polymj.17.117
|
51 |
LARA A, RIVERA E, PARK Y HO,et al. Natural clays with an inherent uranium component that nevertheless sequester uranium from contaminated water[J]. Journal of Environmental Science and Health. Part A,Toxic/Hazardous Substances & Environmental Engineering, 2019, 54(2):101-109. doi: 10.1080/10934529.2018.1530536
|
52 |
SEDDIGHI H, KHODADADI DARBAN A, KHANCHI A,et al. LDH(Mg/Al∶2)@montmorillonite nanocomposite as a novel anion-exchanger to adsorb uranyl ion from carbonate-containing solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(1):415-427. doi: 10.1007/s10967-017-5387-7
|
53 |
BAILEY S E, OLIN T J, BRICKA R M,et al. A review of potentially low-cost sorbents for heavy metals[J]. Water Research, 1999, 33(11):2469-2479. doi: 10.1016/s0043-1354(98)00475-8
|
54 |
MA Fuqiu, GUI Yunyang, LIU Peng,et al. Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation[J]. Chemical Engineering Journal, 2020, 390:124597. doi: 10.1016/j.cej.2020.124597
|
55 |
BHATNAGAR A, HOGLAND W, MARQUES M,et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219:499-511. doi: 10.1016/j.cej.2012.12.038
|
56 |
KÜTAHYAL C, ERAL M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones:Kinetic and thermodynamic aspects[J]. Journal of Nuclear Materials, 2010, 396(2/3):251-256. doi: 10.1016/j.jnucmat.2009.11.018
|
57 |
TAN Xiaofei, LIU Shaobo, LIU Yunguo,et al. Biochar as potential sustainable precursors for activated carbon production:Multiple applications in environmental protection and energy storage[J]. Bioresource Technology, 2017, 227:359-372. doi: 10.1016/j.biortech.2016.12.083
|
58 |
STEIN A, WANG Zhiyong, FIERKE M A. Functionalization of porous carbon materials with designed pore architecture[J]. Advanced Materials, 2009, 21(3):265-293. doi: 10.1002/adma.200801492
|
59 |
AHMED S H, SHARABY C M, GAMMAL E M EL. Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon[J]. Hydrometallurgy, 2013, 134/135:150-157. doi: 10.1016/j.hydromet.2013.02.003
|
60 |
MAYYAS M, AL-HARAHSHEH M, WEI Xianyong. Solid phase extractive preconcentration of Uranium from Jordanian phosphoric acid using 2-hydroxy-4-aminotriazine-anchored activated carbon[J]. Hydrometallurgy, 2014, 149:41-49. doi: 10.1016/j.hydromet.2014.07.005
|
61 |
SALEH T A,NAEEMULLAH, TUZEN M,et al. Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution[J]. Chemical Engineering Research and Design, 2017, 117:218-227. doi: 10.1016/j.cherd.2016.10.030
|
62 |
ZHAO Yongsheng, LIU Chunxia, FENG Miao,et al. Solid phase extraction of uranium(Ⅵ) onto benzoylthiourea-anchored activated carbon[J]. Journal of Hazardous Materials, 2010, 176(1/2/3):119-124. doi: 10.1016/j.jhazmat.2009.11.005
|
63 |
|
|
KANG Fengfu, FAN Lijing. Research progress in the treatment of uranium-containing wastewater by adsorption[J]. Modern Salt and Chemical Industry, 2018, 45(5):95-96. doi: 10.3969/j.issn.1005-880X.2018.05.045
|
64 |
CHATTANATHAN S A, CLEMENT T P, KANEL S R,et al. Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones[J]. Water,Air,& Soil Pollution, 2013, 224(2):1-9. doi: 10.1007/s11270-012-1429-5
|
65 |
SIMON F G, BIERMANN V, PEPLINSKI B. Uranium removal from groundwater using hydroxyapatite[J]. Applied Geochemistry, 2008, 23(8):2137-2145. doi: 10.1016/j.apgeochem.2008.04.025
|
66 |
FENG Yurun, MA Baoshan, GUO Xue,et al. Preparation of amino-modified hydroxyapatite and its uranium adsorption properties[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319(1):437-446. doi: 10.1007/s10967-018-6357-4
|
67 |
SZENKNECT S, MESBAH A, DESCOSTES M,et al. Uranium removal from mining water using Cu substituted hydroxyapatite[J]. Journal of Hazardous Materials, 2020, 392:122501. doi: 10.1016/j.jhazmat.2020.122501
|
68 |
WHITTY-LÉVEILLÉ L, TREMBLAY-CANTIN J C, PICARD-LAFOND A,et al. Core-shell nanoparticles bearing Schiff base ligand for the selective extraction of uranium from REE leach liquors[J]. Hydrometallurgy, 2022, 208:105780. doi: 10.1016/j.hydromet.2021.105780
|
69 |
LIU Fenglei, WANG Anjie, XIANG Miao,et al. Effective adsorption and immobilization of Cr(Ⅵ) and U(Ⅵ) from aqueous solution by magnetic amine-functionalized SBA-15[J]. Separation and Purification Technology, 2022, 282:120042. doi: 10.1016/j.seppur.2021.120042
|
70 |
ZHOU Weini, WANG Hongqing, HOU Sanying,et al. Preparation of Fe 3O 4@SiO 2@MnO 2 microspheres as an adsorbent for Th(Ⅳ) removal from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(1):253-263. doi: 10.1007/s10967-021-07752-6
|
71 |
WANG Zheng, ZHAO Donglin, WU Changnian,et al. Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(Ⅵ) from aqueous solution[J]. Applied Radiation and Isotopes, 2020, 162:109160. doi: 10.1016/j.apradiso.2020.109160
|
72 |
SONG Shuang, ZHANG Sai, HUANG Shuyi,et al. A novel multi-shelled Fe 3O 4@MnO x hollow microspheres for immobilizing U(Ⅵ) and Eu(Ⅲ)[J]. Chemical Engineering Journal, 2019, 355:697-709. doi: 10.1016/j.cej.2018.08.205
|
73 |
BIAN Liang, NIE Jianan, JIANG Xiaoqiang,et al. Selective removal of uranyl from aqueous solutions containing a mix of toxic metal ions using core-shell MFe 2O 4-TiO 2 nanoparticles of montmorillonite edge sites[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12):16267-16278. doi: 10.1021/acssuschemeng.8b03129
|
74 |
ALQADAMI A A, NAUSHAD M, ALOTHMAN Z A,et al. Novel metal-organic framework(MOF) based composite material for the sequestration of U(Ⅵ) and Th(Ⅳ) metal ions from aqueous environment[J]. ACS Applied Materials & Interfaces, 2017, 9(41):36026-36037. doi: 10.1021/acsami.7b10768
|
75 |
LIU Haibo, LI Mengxue, CHEN Tianhu,et al. New synthesis of nZVI/C composites as an efficient adsorbent for the uptake of U(Ⅵ) from aqueous solutions[J]. Environ. Sci. Technol., 2017, 51(16):9227-9234. doi: 10.1021/acs.est.7b02431
|
76 |
LU Songhua, HU Jiansheng, CHEN Changlun,et al. Spectroscopic and modeling investigation of efficient removal of U(Ⅵ) on a novel magnesium silicate/diatomite[J]. Separation and Purification Technology, 2017, 174:425-431. doi: 10.1016/j.seppur.2016.09.052
|
77 |
ZHU Kairuo, CHEN Changlun, XU Mingwenchan,et al. In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(Ⅵ) adsorption and reduction[J]. Chemical Engineering Journal, 2018, 331:395-405. doi: 10.1016/j.cej.2017.08.126
|
78 |
ANDERSON R T, VRIONIS H A, ORTIZ-BERNAD I,et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Applied and Environmental Microbiology, 2003, 69(10):5884-5891. doi: 10.1128/aem.69.10.5884-5891.2003
|
79 |
SUZUKI Y, SUKO T. Geomicrobiological factors that control uranium mobility in the environment:Update on recent advances in the bioremediation of uranium-contaminated sites[J]. Journal of Mineralogical and Petrological Sciences, 2006, 101(6):299-307. doi: 10.2465/jmps.060322
|
80 |
LOVLEY D R, PHILLIPS E J P, GORBY Y A,et al. Microbial reduction of uranium[J]. Nature, 1991, 350(6317):413-416. doi: 10.1038/350413a0
|
81 |
AKOB D M, LEE S H, SHETH M,et al. Gene expression correlates with process rates quantified for sulfate- and Fe(Ⅲ)-reducing bacteria in U(Ⅵ)-contaminated sediments[J]. Frontiers in Microbiology, 2012, 3:280. doi: 10.3389/fmicb.2012.00280
|
82 |
CHANDLER D P, KUKHTIN A, MOKHIBER R,et al. Monitoring microbial community structure and dynamics during in situ U(Ⅵ) bioremediation with a field-portable microarray analysis system[J]. Environmental Science & Technology, 2010, 44(14):5516-5522. doi: 10.1021/es1006498
|
83 |
SNOEYENBOS-WEST O L, NEVIN K P, ANDERSON R T,et al. Enrichment of Geobacter species in response to stimulation of Fe(Ⅲ) reduction in sandy aquifer sediments[J]. Microbial Ecology, 2000, 39(2):153-167. doi: 10.1007/s002480000018
|
84 |
BARLETT M, ZHUANG K, MAHADEVAN R,et al. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation[J]. Biogeosciences, 2012, 9(3):1033-1040. doi: 10.5194/bg-9-1033-2012
|
85 |
YANG H B, TAN N, WU F J,et al. Biosorption of uranium(Ⅵ) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(3):1011-1016. doi: 10.1007/s10967-011-1552-6
|
86 |
成彬. 新型功能化生物吸附剂的制备及其吸附铀的性能研究[D]. 衡阳:南华大学,2018.
|
87 |
于栋,罗庆,苏伟,等. 重金属废水电沉积处理技术研究及应用进展[J]. 化工进展,2020,39(5):1938-1949.
|
|
YU Dong, LUO Qing, SU Wei,et al. A review on research and application of electrodeposition for heavy metal wastewater treatment[J]. Chemical Industry and Engineering Progress,2020,39(5):1938-1949.
|
88 |
LIU Tian, YUAN Jili, ZHANG Bo,et al. Removal and recovery of uranium from groundwater using direct electrochemical reduction method:Performance and implications[J]. Environmental Science & Technology, 2019, 53(24):14612-14619. doi: 10.1021/acs.est.9b06790
|
89 |
YUAN Ke, ILTON E S, ANTONIO M R,et al. Electrochemical and spectroscopic evidence on the one-electron reduction of U(Ⅵ) to U(Ⅴ) on magnetite[J]. Environmental Science & Technology, 2015, 49(10):6206-6213. doi: 10.1021/acs.est.5b00025
|
90 |
曾俊杰. 电沉积法提取放射样品中铀、钚等α核素的研究[C]// 中国核动力研究设计院科学技术年报,2013.
|
91 |
LU Bingqing, LI Mi, ZHANG Xiaowen,et al. Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach[J]. Journal of Hazardous Materials, 2018, 343:255-265. doi: 10.1016/j.jhazmat.2017.09.037
|
92 |
Shaoyan LÜ, LI Mi, WU Xiaoyan,et al. A non-polluting method for rapidly purifying uranium-containing wastewater and efficiently recovering uranium through electrochemical mineralization and oxidative roasting[J]. Journal of Hazardous Materials, 2021, 416:125885. doi: 10.1016/j.jhazmat.2021.125885
|
93 |
KULKARNI S S, JUVEKAR V A, MUKHOPADHYAY S. Intensification of emulsion liquid membrane extraction of uranium(Ⅵ) by replacing nitric acid with sodium nitrate solution[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125:18-26. doi: 10.1016/j.cep.2017.12.021
|
94 |
MCMASTER S A,RAM R, CHARALAMBOUS F,et al. Synthesis and characterisation of the uranium pyrochlore betafite[(Ca,U) 2(Ti,Nb,Ta) 2O 7 [J]. Journal of Hazardous Materials, 2014, 280:478-486. doi: 10.1016/j.jhazmat.2014.07.062
|
95 |
ZAHAKIFAR F, CHARKHI A, TORAB-MOSTAEDI M,et al. Performance evaluation of hollow fiber renewal liquid membrane for extraction of uranium(Ⅵ) from acidic sulfate solution[J]. Radiochimica Acta, 2018, 106(3):181-189. doi: 10.1515/ract-2017-2821
|
96 |
周慧,冷佳伦,郭亚丹,等. 膜技术在核工业铀废水处理中的应用研究进展[J]. 工业水处理,2022,42(5):11-18.
|
|
ZHOU Hui, LENG Jialun, GUO Yadan,et al. Research progress of membrane technology in treatment of uranium-containing wastewater from nuclear industry[J]. Industrial Water Treatment,2022,42(5):11-18.
|
97 |
FAVRE-RÉGUILLON A, LEBUZIT G, MURAT D,et al. Selective removal of dissolved uranium in drinking water by nanofiltration[J]. Water Research, 2008, 42(4/5):1160-1166. doi: 10.1016/j.watres.2007.08.034
|
98 |
GUO Laodong, WARNKEN K W, SANTSCHI P H. Retention behavior of dissolved uranium during ultrafiltration:Implications for colloidal U in surface waters[J]. Marine Chemistry, 2007, 107(2):156-166. doi: 10.1016/j.marchem.2007.06.017
|
99 |
JOHN A M ST, CATTRALL R W, KOLEV S D. Transport and separation of uranium(Ⅵ) by a polymer inclusion membrane based on di-(2-ethylhexyl) phosphoric acid[J]. Journal of Membrane Science, 2012, 409/410:242-250. doi: 10.1016/j.memsci.2012.03.061
|
100 |
KEDARI C S, PANDIT S S, GANDHI P M. Separation by competitive transport of uranium(Ⅵ) and thorium(Ⅳ) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier[J]. Journal of Membrane Science, 2013, 430:188-195. doi: 10.1016/j.memsci.2012.12.017
|
101 |
KHEDR M G. Radioactive contamination of groundwater,special aspects and advantages of removal by reverse osmosis and nanofiltration[J]. Desalination, 2013, 321:47-54. doi: 10.1016/j.desal.2013.01.013
|
102 |
KOLEV S D, JOHN A M ST, CATTRALL R W. Mathematical modeling of the extraction of uranium(Ⅵ) into a polymer inclusion membrane composed of PVC and di-(2-ethylhexyl) phosphoric acid[J]. Journal of Membrane Science, 2013, 425/426:169-175. doi: 10.1016/j.memsci.2012.08.050
|
103 |
MONTAÑA M, CAMACHO A, SERRANO I,et al. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration,reverse osmosis and electrodialysis reversal[J]. Journal of Environmental Radioactivity, 2013, 125:86-92. doi: 10.1016/j.jenvrad.2013.01.010
|
104 |
ROACH J D, ZAPIEN J H. Inorganic ligand-modified,colloid-enhanced ultrafiltration:A novel method for removing uranium from aqueous solution[J]. Water Research, 2009, 43(18):4751-4759. doi: 10.1016/j.watres.2009.08.007
|
105 |
VILLALOBOS-RODRÍGUEZ R, MONTERO-CABRERA M E, ESPARZA-PONCE H E,et al. Uranium removal from water using cellulose triacetate membranes added with activated carbon[J]. Applied Radiation and Isotopes, 2012, 70(5):872-881. doi: 10.1016/j.apradiso.2012.01.017
|
106 |
BIAN R, YAMAMOTO K, WATANABE Y. The effect of shear rate on controlling the concentration polarization and membrane fouling[J]. Desalination, 2000, 131(1/2/3):225-236. doi: 10.1016/s0011-9164(00)90021-3
|
107 |
BELLONA C, DREWES J E, XU Pei,et al. Factors affecting the rejection of organic solutes during NF/RO treatment:A literature review[J]. Water Research, 2004, 38(12):2795-2809. doi: 10.1016/j.watres.2004.03.034
|
108 |
VILLALOBOS-RODRÍGUEZ R, MONTERO-CABRERA M E, ESPARZA-PONCE H E,et al. Uranium removal from water using cellulose triacetate membranes added with activated carbon[J]. Applied Radiation and Isotopes, 2012, 70(5):872-881. doi: 10.1016/j.apradiso.2012.01.017
|
109 |
TONDRE C. Surfactant-based colloidal particles as the extracting phase for the removal of metal ions from aqueous environments:Kinetic and applied aspects[M]// ACS Symposium Series. Washington DC:American Chemical Society, 1999:139-157. doi: 10.1021/bk-2000-0740.ch010
|
110 |
ROACH J D, ZAPIEN J H. Inorganic ligand-modified,colloid-enhanced ultrafiltration:A novel method for removing uranium from aqueous solution[J]. Water Research, 2009, 43(18):4751-4759. doi: 10.1016/j.watres.2009.08.007
|
111 |
CATH T Y, CHILDRESS A E, ELIMELECH M. Forward osmosis:Principles,applications,and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2):70-87. doi: 10.1016/j.memsci.2006.05.048
|
112 |
BHALARA P D, PUNETHA D, BALASUBRAMANIAN K. A review of potential remediation techniques for uranium(Ⅵ) ion retrieval from contaminated aqueous environment[J]. Journal of Environmental Chemical Engineering, 2014, 2(3):1621-1634. doi: 10.1016/j.jece.2014.06.007
|
113 |
MEHTA V S, MAILLOT F, WANG Zheming,et al. Effect of reaction pathway on the extent and mechanism of uranium(Ⅵ) immobilization with calcium and phosphate[J]. Environmental Science & Technology, 2016, 50(6):3128-3136. doi: 10.1021/acs.est.5b06212
|
114 |
MORRISON K D, ZAVARIN M, KERSTING A B,et al. Influence of uranium concentration and pH on U-phosphate biomineralization by Caulobacter OR37[J]. Environmental Science & Technology, 2021, 55(3):1626-1636. doi: 10.1021/acs.est.0c05437
|
115 |
KOMLOS J, PEACOCK A, KUKKADAPU R K,et al. Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions[J]. Geochimica et Cosmochimica Acta, 2008, 72(15):3603-3615. doi: 10.1016/j.gca.2008.05.040
|