1 |
RAVIKUMAR Y, RAZACK S A, YUN Junhua,et al. Recent advances in microalgae-based distillery wastewater treatment[J]. Environmental Technology & Innovation, 2021, 24:101839. doi: 10.1016/j.eti.2021.101839
|
2 |
LOFRANO G, MERIC S. A comprehensive approach to winery wastewater treatment:A review of the state-of the-art[J]. Desalination and Water Treatment, 2016, 57(7):3011-3028. doi: 10.1080/19443994.2014.982196
|
3 |
SHAH M P, RODRIGUEZ-COUTO S. Microbial wastewater treatment[M]. Amsterdam:Elsevier,2019:195-236.
|
4 |
BHARAGAVA R N, CHOWDHARY P. Emerging and eco-friendly approaches for waste management[M]. Singapore:Springer Singapore, 2019:50-70. doi: 10.1007/978-981-10-8669-4
|
5 |
AMENORFENYO D K, HUANG Xianghu, ZHANG Yulei,et al. Microalgae brewery wastewater treatment:Potentials,benefits and the challenges[J]. International Journal of Environmental Research and Public Health, 2019, 16(11):1910. doi: 10.3390/ijerph16111910
|
6 |
|
|
ZU Junning, SU Yifeng, WANG Yixu,et al. Research progress of liquor industry wastewater treatment technology[J]. China Resources Comprehensive Utilization, 2020, 38(10):97-106. doi: 10.3969/j.issn.1008-9500.2020.10.027
|
7 |
LIU Xiaoya, HONG Yu. Microalgae-based wastewater treatment and recovery with biomass and value-added products:Abrief review[J]. Current Pollution Reports, 2021, 7(2):227-245. doi: 10.1007/s40726-021-00184-6
|
8 |
NAGARAJAN D, LEE D J, CHEN C Y,et al. Resource recovery from wastewaters using microalgae-based approaches:A circular bioeconomy perspective[J]. Bioresource Technology, 2020, 302:122817. doi: 10.1016/j.biortech.2020.122817
|
9 |
MOHD UDAIYAPPAN A F, HASAN H ABU, TAKRIFF M S,et al. A review of the potentials,challenges and current status of microalgae biomass applications in industrial wastewater treatment[J]. Journal of Water Process Engineering, 2017, 20:8-21. doi: 10.1016/j.jwpe.2017.09.006
|
10 |
SHARMA G K, KHAN S A, SHRIVASTAVA M,et al. Circular economy fertilization:Phycoremediated algal biomass as biofertilizers for sustainable crop production[J]. Journal of Environmental Management, 2021, 287:112295. doi: 10.1016/j.jenvman.2021.112295
|
11 |
KRISHNAMOORTHY S, PREMALATHA M, VIJAYASEKARAN M. Characterization of distillery wastewater:An approach to retrofit existing effluent treatment plant operation with phycoremediation[J]. Journal of Cleaner Production, 2017, 148:735-750. doi: 10.1016/j.jclepro.2017.02.045
|
12 |
AMENORFENYO D K, HUANG Xianghu, LI Changling,et al. A review of microalgae and other treatment methods of distillery wastewater[J]. Water and Environment Journal, 2020, 34(S1):988-1002. doi: 10.1111/wej.12552
|
13 |
TURON V, TRABLY E, FAYET A,et al. Raw dark fermentation effluent to support heterotrophic microalgae growth:Microalgae successfully outcompete bacteria for acetate[J]. Algal Research, 2015, 12:119-125. doi: 10.1016/j.algal.2015.08.011
|
14 |
TURON V, TRABLY E, FOUILLAND E,et al. Potentialities of dark fermentation effluents as substrates for microalgae growth:A review[J]. Process Biochemistry, 2016, 51(11):1843-1854. doi: 10.1016/j.procbio.2016.03.018
|
15 |
CHOI H J. Parametric study of brewery wastewater effluent treatment using Chlorella vulgaris microalgae[J]. Environmental Engineering Research, 2016, 21(4):401-408. doi: 10.4491/eer.2016.024
|
16 |
GUPTA S, PAWAR S B, PANDEY R A. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries[J]. Science of the Total Environment, 2019, 687:1107-1126. doi: 10.1016/j.scitotenv.2019.06.115
|
17 |
PEREZ-GARCIA O, ESCALANTE F M E, DE-BASHAN L E,et al. Heterotrophic cultures of microalgae:Metabolism and potential products[J]. Water Research, 2011, 45(1):11-36. doi: 10.1016/j.watres.2010.08.037
|
18 |
CASAL C, CUARESMA M, VEGA J M,et al. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea[J]. Marine Drugs, 2010, 9(1):29-42. doi: 10.3390/md9010029
|
19 |
GUPTA N, KHARE P, SINGH D P. Nitrogen-dependent metabolic regulation of lipid production in microalga Scenedesmus vacuolatus [J]. Ecotoxicology and Environmental Safety, 2019, 174:706-713. doi: 10.1016/j.ecoenv.2019.03.035
|
20 |
EMPARAN Q, HARUN R, DANQUAH M K. Role of phycoremediation for nutrient removal from wastewaters:A review[J]. Applied Ecology and Environmental Research, 2019, 17(1):889-915. doi: 10.15666/aeer/1701_889915
|
21 |
WANG Jinghan, ZHANG Tianyuan, Guohua DAO,et al. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies[J]. Applied Microbiology and Biotechnology, 2017, 101(7):2659-2675. doi: 10.1007/s00253-017-8184-x
|
22 |
SONG Chunfeng, HU Xiaofang, LIU Zhengzheng,et al. Combination of brewery wastewater purification and CO 2 fixation with potential value-added ingredients production via different microalgae strains cultivation[J]. Journal of Cleaner Production, 2020, 268:122332. doi: 10.1016/j.jclepro.2020.122332
|
23 |
LIU Cuixia, SUBASHCHANDRABOSE S, MING Hui,et al. Phycoremediation of dairy and winery wastewater using Diplosphaera sp.MM1[J]. Journal of Applied Phycology, 2016, 28(6):3331-3341. doi: 10.1007/s10811-016-0894-4
|
24 |
KRISHNAMOORTHY S, MANICKAM P, MUTHUKARUPPAN V.Evaluation of distillery wastewater treatability in a customized photobioreactor using blue-green microalgae-Laboratory and outdoor study[J]. Journal of Environmental Management, 2019, 234:412-423. doi: 10.1016/j.jenvman.2019.01.014
|
25 |
LI Feng, AMENORFENYO D K, ZHANG Yulei,et al. Cultivation of Chlorella vulgaris in membrane-treated industrial distillery wastewater:Growth and wastewater treatment[J]. Frontiers in Environmental Science, 2021, 9:770633. doi: 10.3389/fenvs.2021.770633
|
26 |
|
|
LI Panrong, ZOU Changwei, WAN Jinbao,et al. Research of micro algae processing wastewater[J]. Industrial Water Treatment, 2016, 36(5):5-9. doi: 10.11894/1005-829x.2016.36(5).005
|
27 |
HIGGINS B T, GENNITY I, FITZGERALD P S,et al. Algal-bacterial synergy in treatment of winery wastewater[J]. Npj Clean Water, 2018, 1:6. doi: 10.1038/s41545-018-0005-y
|
28 |
PAPADOPOULOS K P, ECONOMOU C N, DAILIANIS S,et al. Brewery wastewater treatment using cyanobacterial-bacterial settleable aggregates[J]. Algal Research, 2020, 49:101957. doi: 10.1016/j.algal.2020.101957
|
29 |
LING Jiayin,NIP S, CHEOK W L,et al. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater[J]. Bioresource Technology, 2014, 173:132-139. doi: 10.1016/j.biortech.2014.09.047
|
30 |
DIAS C, GOUVEIA L, SANTOS J A L,et al. Rhodosporidium toruloides and tetradesmus obliquus populations dynamics in symbiotic cultures,developed in brewery wastewater,for lipid production[J]. Current Microbiology, 2022, 79(2):40. doi: 10.1007/s00284-021-02683-7
|
31 |
DIAS C, GOUVEIA L, SANTOS J A L,et al. Using flow cytometry to monitor the stress response of yeast and microalgae populations in mixed cultures developed in brewery effluents[J]. Journal of Applied Phycology, 2020, 32(6):3687-3701. doi: 10.1007/s10811-020-02236-8
|
32 |
DIAS C, REIS A, SANTOS J A L,et al. Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid production[J]. Process Biochemistry, 2022, 113:71-86. doi: 10.1016/j.procbio.2021.12.019
|
33 |
HAN Xiaoxuan, HU Xiaofang, YIN Qingrong,et al. Intensification of brewery wastewater purification integrated with CO 2 fixation via microalgae co-cultivation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105710. doi: 10.1016/j.jece.2021.105710
|
34 |
SPENNATI E, MIRIZADEH S, CASAZZA A A,et al. Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater[J]. Algal Research, 2021, 60:102519. doi: 10.1016/j.algal.2021.102519
|
35 |
SPENNATI E, CASAZZA A, CONVERTI A. Winery wastewater treatment by microalgae to produce low-cost biomass for energy production purposes[D]. Genoa:University of Genoa, 2020. doi: 10.3390/en13102490
|
36 |
BHOLA V, SWALAHA F, RANJITH KUMAR R,et al. Overview of the potential of microalgae for CO 2 sequestration[J]. International Journal of Environmental Science and Technology, 2014, 11(7):2103-2118. doi: 10.1007/s13762-013-0487-6
|
37 |
KALOUDAS D, PAVLOVA N, PENCHOVSKY R. Phycoremediation of wastewater by microalgae:A review[J]. Environmental Chemistry Letters, 2021, 19(4):2905-2920. doi: 10.1007/s10311-021-01203-0
|
38 |
GETTE-BOUVAROT M, MERMILLOD-BLONDIN F, LEMOINE D,et al. The potential control of benthic biofilm growth by macrophytes:A mesocosm approach[J]. Ecological Engineering, 2015, 75:178-186. doi: 10.1016/j.ecoleng.2014.12.001
|
39 |
NAVARRO-LÓPEZ E, RUÍZ-NIETO A, FERREIRA A,et al. Biostimulant potential of scenedesmus obliquus grown in brewery wastewater[J]. Molecules(Basel,Switzerland), 2020, 25(3):E664. doi: 10.3390/molecules25030664
|
40 |
FERREIRA A, RIBEIRO B, MARQUES P A S S,et al. Scenedesmus obliquus mediated brewery wastewater remediation and CO 2 biofixation for green energy purposes[J]. Journal of Cleaner Production, 2017, 165:1316-1327. doi: 10.1016/j.jclepro.2017.07.232
|
41 |
FERREIRA A, RIBEIRO B, FERREIRA A F,et al. Scenedesmus obliquus microalga-based biorefinery-from brewery effluent to bioactive compounds,biofuels and biofertilizers-aiming at a circular bioeconomy[J]. Biofuels,Bioproducts and Biorefining, 2019, 13(5):1169-1186. doi: 10.1002/bbb.2032
|
42 |
MATA T M, MELO A C, SIMÕES M,et al. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus [J]. Bioresource Technology, 2012, 107:151-158. doi: 10.1016/j.biortech.2011.12.109
|
43 |
MARCHÃO L, SILVA T L, GOUVEIA L,et al. Microalgae-mediated brewery wastewater treatment:Effect of dilution rate on nutrient removal rates,biomass biochemical composition,and cell physiology[J]. Journal of Applied Phycology, 2018, 30(3):1583-1595. doi: 10.1007/s10811-017-1374-1
|
44 |
MARCHÃO L, FERNANDES J R, SAMPAIO A,et al. Microalgae and immobilized TiO 2/UV-A LEDs as a sustainable alternative for winery wastewater treatment[J]. Water Research, 2021, 203:117464. doi: 10.1016/j.watres.2021.117464
|
45 |
YIRGU Z, LETA S, HUSSEN A,et al. Nutrient removal and carbohydrate production potential of indigenous Scenedesmus sp. grown in anaerobically digested brewery wastewater[J]. Environmental Systems Research, 2020, 9:1-14. doi: 10.1186/s40068-020-00201-5
|
46 |
YIRGU Z, LETA S, HUSSEN A,et al. Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp.grown in brewery effluent using response surface methodology[J]. Heliyon, 2021, 7(5):e07115. doi: 10.1016/j.heliyon.2021.e07115
|
47 |
YIRGU Z, LETA S, HUSSEN A,et al. Pretreatment and optimization of reducing sugar extraction from indigenous microalgae grown on brewery wastewater for bioethanol production[J]. Biomass Conversion and Biorefinery,2021:1-15.
|
48 |
AVILA R, JUSTO Á, CARRERO E,et al. Water resource recovery coupling microalgae wastewater treatment and sludge co-digestion for bio-wastes valorisation at industrial pilot-scale[J]. Bioresource Technology, 2022, 343:126080. doi: 10.1016/j.biortech.2021.126080
|
49 |
LUTZU G A, ZHANG Wei, LIU Tianzhong. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus [J]. Environmental Technology, 2016, 37(12):1568-1581. doi: 10.1080/09593330.2015.1121292
|
50 |
|
|
LIU Jinshang, XIAO Mingming, HUANG Xianghu,et al. Effect of CO 2 volume concentration on microalgae cultured in alcohol wastewater and its purification[J]. Fishery Modernization, 2020, 47(2):42-51. doi: 10.3969/j.issn.1007-9580.2020.02.006
|
51 |
FAROOQ W, LEE Y C, RYU B G,et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity[J]. Bioresource Technology, 2013, 132:230-238. doi: 10.1016/j.biortech.2013.01.034
|
52 |
DE J RAPOSO M F, OLIVEIRA S E, CASTRO P M,et al. On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass[J]. Journal of the Institute of Brewing, 2010, 116(3):285-292. doi: 10.1002/j.2050-0416.2010.tb00433.x
|
53 |
SOLEYMANI ROBATI S M, NOSRATI M, GHANATI F,et al. Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures[J]. Applied Microbiology and Biotechnology, 2021, 105(8):3339-3351. doi: 10.1007/s00253-021-11233-x
|
54 |
QUINTERO-DALLOS V, GARCÍA-MARTÍNEZ J B, CONTRERAS-ROPERO J E,et al. Vinasse as a sustainable medium for the production of Chlorella vulgaris UTEX 1803[J]. Water, 2019, 11(8):1526. doi: 10.3390/w11081526
|
55 |
DARPITO C, SHIN W S, JEON S,et al. Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production[J]. Bioprocess and Biosystems Engineering, 2015, 38(3):523-530. doi: 10.1007/s00449-014-1292-4
|
56 |
SOLOVCHENKO A, POGOSYAN S, CHIVKUNOVA O,et al. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence[J]. Algal Research, 2014, 6:234-241. doi: 10.1016/j.algal.2014.01.002
|
57 |
SANKARAN K, PREMALATHA M. Nutrients uptake from anaerobically digested distillery wastewater by Spirulina sp. under xenon lamp illumination[J]. Journal of Water Process Engineering, 2018, 25:295-300. doi: 10.1016/j.jwpe.2018.08.014
|
58 |
|
|
WANG Yuzhou, YANG Lei, ZHANG Jinglai,et al. Culture of Spirulina maxima using brewery wastewater[J]. Environmental Protection of Chemical Industry, 2014, 34(3):257-261. doi: 10.3969/j.issn.1006-1878.2014.03.013
|
59 |
刘玉环,史晓洁,巫小丹,等. 螺旋藻和菌-藻共生系统处理啤酒废水[J]. 环境工程学报,2014,8(1):82-86.
|
|
LIU Yuhuan, SHI Xiaojie, WU Xiaodan,et al. Brewery wastewater treatment by Spirulina platensis or fungi-algae symbiosis system[J]. Chinese Journal of Environmental Engineering,2014,8(1):82-86.
|
60 |
|
|
LIU Qing, ZHANG Duan, HE Yalong,et al. Study on the cultivation of Spirulina with beer wastewater[J]. Journal of Anhui Agricultural Sciences, 2014, 42(1):54-56. doi: 10.3969/j.issn.0517-6611.2014.01.022
|
61 |
萧铭明,黄翔鹄,黄强,等. 温度、照度和接种量对钝顶螺旋藻去除酒精废水氮和磷的影响[J]. 广东海洋大学学报,2019,39(3):54-60.
|
|
XIAO Mingming, HUANG Xianghu, HUANG Qiang,et al. Effects of temperature,light intensity and inoculation volume on nitrogen and phosphorus removal from alcohol wastewater by Spirulina platensis [J]. Journal of Guangdong Ocean University,2019,39(3):54-60.
|
62 |
MATA T, SANTOS J, MENDES A,et al. Sustainability evaluation of biodiesel produced from microalgae Chlamydomonas sp. grown in brewery wastewater[J]. Chemical Engineering Transactions,2014,37:823-828.
|
63 |
余江,王萍,冉宗信,等. 莱茵衣藻Chlammydomonas reinhardtii净化酒糟废水研究[J]. 四川师范大学学报(自然科学版),2016,39(6):900-904.
|
|
YU Jiang, WANG Ping, RAN Zongxin,et al. Study on purification of vinasse wastewater by Chlamydomonas reinhardtii [J]. Journal of Sichuan Normal University(Natural Science),2016,39(6):900-904.
|
64 |
LIU Tingting, LUO Fei, WANG Zhenyao,et al. The enhanced biomass and lipid accumulation in Coccomyxa subellipsoidea with an integrated treatment strategy initiated by brewery effluent and phytohormones[J]. World Journal of Microbiology & Biotechnology, 2018, 34(2):25. doi: 10.1007/s11274-018-2408-9
|
65 |
KIM T H, LEE Y, HAN S H,et al. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen,phosphorus removal using Scenedesmus sp. for wastewater treatment[J]. Bioresource Technology, 2013, 130:75-80. doi: 10.1016/j.biortech.2012.11.134
|
66 |
NZAYISENGA J C, FARGE X, GROLL S L,et al. Effects of light intensity on growth and lipid production in microalgae grown in wastewater[J]. Biotechnology for Biofuels, 2020, 13:4. doi: 10.1186/s13068-019-1646-x
|
67 |
DOGARIS I, WELCH M, MEISER A,et al. A novel horizontal photobioreactor for high-density cultivation of microalgae[J]. Bioresource Technology, 2015, 198:316-324. doi: 10.1016/j.biortech.2015.09.030
|
68 |
张权,常春,李斐,等. 微藻在废水中的高密度培养研究进展[J]. 现代化工,2016,36(11):37-41.
|
|
ZHANG Quan, CHANG Chun, LI Fei,et al. Progress of high-density culturing of microalgae in wastewater-based medium[J]. Modern Chemical Industry,2016,36(11):37-41.
|
69 |
周浩媛,陈军,盛彦清. 微藻技术在污水处理中的应用与展望[J]. 环境科学与技术,2020,43(11):160-171.
|
|
ZHOU Haoyuan, CHEN Jun, SHENG Yanqing. Research progress of microalgae wastewater treatment technologies[J]. Environmental Science & Technology,2020,43(11):160-171.
|
70 |
DETCHANAMURTHY S. Studies on the effect of red,blue and white LED lights on the productivity of Chlorella vulgaris to treat dye industry effluent[J]. Advances in Biotechnology & Microbiology, 2017, 6(2).DOI: 10.19080/AIBM.2017.06.555682 .
|
71 |
VANDAMME D, FOUBERT I, FRAEYE I,et al. Flocculation of Chlorella vulgaris induced by high pH:Role of magnesium and calcium and practical implications[J]. Bioresource Technology, 2012, 105:114-119. doi: 10.1016/j.biortech.2011.11.105
|
72 |
MATA T M, MELO A C, MEIRELES S,et al. Potential of microalgae scenedesmus obliquus grown in brewery wastewater for biodiesel production[J]. Chemical Engineering Transactions,2013,32:901-906.
|
73 |
LI Xin, HU Hongying, GAN Ke,et al. Effects of different nitrogen and phosphorus concentrations on the growth,nutrient uptake,and lipid accumulation of a freshwater microalga Scenedesmus sp.[J]. Bioresource Technology, 2010, 101(14):5494-5500. doi: 10.1016/j.biortech.2010.02.016
|
74 |
LI Kun, LIU Qiang, FANG Fan,et al. Microalgae-based wastewater treatment for nutrients recovery:A review[J]. Bioresource Technology, 2019, 291:121934. doi: 10.1016/j.biortech.2019.121934
|
75 |
余江,陶红群,王亚婷,等. 磷受控对酿酒废水-微藻培育耦合体系的影响[J]. 西南交通大学学报,2019,54(3):655-662.
|
|
YU Jiang, TAO Hongqun, WANG Yating,et al. Influence of phosphorus control on coupling system of winery wastewater and microalgae cultivation[J]. Journal of Southwest Jiaotong University,2019,54(3):655-662.
|
76 |
孟顺龙,裘丽萍,胡庚东,等. 氮磷比对两种蓝藻生长及竞争的影响[J]. 农业环境科学学报,2012,31(7):1438-1444.
|
|
MENG Shunlong, QIU Liping, HU Gengdong,et al. Effect of nitrogen and phosphorus ratios on growth and competition of two blue-green algae[J]. Journal of Agro-Environment Science,2012,31(7):1438-1444.
|
77 |
邓祥元,丁婉婉,樊玲波,等. 2种微藻去除氮、磷能力的比较[J]. 吉林农业大学学报,2013,35(6):694-698.
|
|
DENG Xiangyuan, DING Wanwan, FAN Lingbo,et al. Comparative study on N and P removal ability of Chlorella pyrenoidosa and Scenedesmus obliquus [J]. Journal of Jilin Agricultural University,2013,35(6):694-698.
|
78 |
席晶晶. 不同氮磷比混合污水对两种微藻生长的影响及其机制探究[D]. 哈尔滨:哈尔滨工业大学,2020.
|
79 |
CARVALHO A P, MEIRELES L A, MALCATA F X. Microalgal reactors:A review of enclosed system designs and performances[J]. Biotechnology Progress, 2006, 22(6):1490-1506. doi: 10.1002/bp060065r
|
80 |
HUO Shuhao, WANG Zhongming, ZHU Shunni,et al. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter,South China[J]. Bioresource Technology, 2012, 121:76-82. doi: 10.1016/j.biortech.2012.07.012
|
81 |
AYRE J M, MOHEIMANI N R, BOROWITZKA M A. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations[J]. Algal Research, 2017, 24:218-226. doi: 10.1016/j.algal.2017.03.023
|
82 |
MONTALVO G E B, THOMAZ-SOCCOL V, VANDENBERGHE L P S,et al. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production[J]. Bioresource Technology, 2019, 273:103-113. doi: 10.1016/j.biortech.2018.10.081
|
83 |
MU OZ R, GONZALEZ-FERNANDEZ C. Microalgae-based biofuels and bioproducts[M]. Amsterdam:Elsevier, 2017:1-44. doi: 10.1016/c2015-0-05935-4
|
84 |
LU Weidong, WANG Zhongming, WANG Xuewei,et al. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production:Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures[J]. Bioresource Technology, 2015, 192:382-388. doi: 10.1016/j.biortech.2015.05.094
|
85 |
YANG I S, SALAMA E S, KIM J O,et al. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal[J]. Energy Conversion and Management, 2016, 117:54-62. doi: 10.1016/j.enconman.2016.03.017
|
86 |
ACIÉN F G, GÓMEZ-SERRANO C, MORALES-AMARAL M M,et al. Wastewater treatment using microalgae:How realistic a contribution might it be to significant urban wastewater treatment?[J]. Applied Microbiology and Biotechnology, 2016, 100(21):9013-9022. doi: 10.1007/s00253-016-7835-7
|
87 |
MORALES-AMARAL M D M, GÓMEZ-SERRANO C, ACIÉN F G,et al. Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source[J]. Algal Research, 2015, 12:99-108. doi: 10.1016/j.algal.2015.08.020
|
88 |
GUPTA P L, LEE S M, CHOI H J. A mini review:photobioreactors for large scale algal cultivation[J]. World Journal of Microbiology and Biotechnology, 2015, 31(9):1409-1417. doi: 10.1007/s11274-015-1892-4
|
89 |
NORSKER N H, BARBOSA M J, VERMUË M H,et al. Microalgal production:A close look at the economics[J]. Biotechnology Advances, 2011, 29(1):24-27. doi: 10.1016/j.biotechadv.2010.08.005
|
90 |
VO H N P, NGO H H, GUO Wenshan,et al. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment[J]. Science of the Total Environment, 2019, 651:1549-1568. doi: 10.1016/j.scitotenv.2018.09.282
|
91 |
章真,刘晓军,陈夏,等. 微藻生物技术在碳中和的应用与展望[J]. 中国生物工程杂志,2022,42(S1):160-173.
|
|
ZHANG Zhen, LIU Xiaojun, CHEN Xia,et al. Application and prospect of microalgae biotechnology in carbon neutralization[J]. China Biotechnology,2022,42(S1):160-173.
|
92 |
MASWANNA T, LINDBLAD P, MANEERUTTANARUNGROJ C. Improved biohydrogen production by immobilized cells of the green alga Tetraspora sp. CU2551 incubated under aerobic condition[J]. Journal of Applied Phycology, 2020, 32(5):2937-2945. doi: 10.1007/s10811-020-02184-3
|
93 |
MASWANNA T, PHUNPRUCH S, LINDBLAD P,et al. Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp. CU2551 grown under anaerobic condition[J]. Biomass and Bioenergy, 2018, 111:88-95. doi: 10.1016/j.biombioe.2018.01.005
|
94 |
KUSMAYADI A, LEONG Y K, YEN H W,et al. Microalgae as sustainable food and feed sources for animals and humans:Biotechnological and environmental aspects[J]. Chemosphere, 2021, 271:129800. doi: 10.1016/j.chemosphere.2021.129800
|
95 |
FUENTES-GRÜNEWALD C, IGNACIO GAYO-PELÁEZ J, NDOVELA V,et al. Towards a circular economy:A novel microalgal two-step growth approach to treat excess nutrients from digestate and to produce biomass for animal feed[J]. Bioresource Technology, 2021, 320:124349. doi: 10.1016/j.biortech.2020.124349
|
96 |
HOLMAN B W B, KASHANI A, MALAU-ADULI A E O. Effects of Spirulina( Arthrospira platensis) supplementation level and basal diet on liveweight,body conformation and growth traits in genetically divergent Australian dual-purpose lambs during simulated drought and typical pasture grazing[J]. Small Ruminant Research, 2014, 120(1):6-14. doi: 10.1016/j.smallrumres.2014.04.014
|
97 |
|
|
BIAN Jianwen, CUI Yan, YANG Songqi,et al. Research progress in agricultural application of microalgae bio-fertilizer[J]. Soil and Fertilizer Sciences in China, 2020(5):1-9. doi: 10.11838/sfsc.1673-6257.19290
|
98 |
|
|
HU Hongying, LI Xin. Analysis of key techniques and production potential of biodiesel production based on microalgae with wastewater as resources[J]. Ecology and Environmental Sciences, 2010, 19(3):739-744. doi: 10.3969/j.issn.1674-5906.2010.03.043
|
99 |
WANG Zichao, GAO Mengchun, WEI Junfeng,et al. Extracellular polymeric substances,microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations[J]. Bioresource Technology, 2016, 205:213-221. doi: 10.1016/j.biortech.2016.01.067
|
100 |
HO S H, CHEN C Y, LEE D J,et al. Perspectives on microalgal CO 2-emission mitigation systems:A review[J]. Biotechnology Advances, 2011, 29(2):189-198. doi: 10.1016/j.biotechadv.2010.11.001
|
101 |
GUPTA S K,BUX F. Application of microalgae in wastewater treatment[M]. Singapore:Springer, 2019:81-99. doi: 10.1007/978-3-030-13909-4
|