1 |
|
|
QIN Bin, GU Jinchuan, YIN Ping,et al. Research progresses on dye wastewater treatment technology[J]. Environmental Protection of Chemical Industry, 2021, 41(1):9-18. doi: 10.3969/j.issn.1006-1878.2021.01.002
|
2 |
DONG Weiyang, LEE C W, LU Xinchun,et al. Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO 2-SiO 2 nanocomposites generating excellent degradation activity of RhB dye[J]. Applied Catalysis B:Environmental, 2010, 95(3/4):197-207. doi: 10.1016/j.apcatb.2009.12.025
|
3 |
LOPS C, ANCONA A, DI CESARE K,et al. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO[J]. Applied Catalysis B:Environmental, 2019, 243:629-640. doi: 10.1016/j.apcatb.2018.10.078
|
4 |
YE Hanchen, CHEN Dongyun, LI Najun,et al. Azine-linked covalent organic framework-modified GO membrane for high-efficiency separation of aqueous dyes and salts in wastewater[J]. Journal of Membrane Science, 2022, 655:120546. doi: 10.1016/j.memsci.2022.120546
|
5 |
MU Yongkang, DU Huixin, HE Wenyan,et al. Functionalized mesoporous magnetic biochar for methylene blue removal:Performance assessment and mechanism exploration[J]. Diamond and Related Materials, 2022, 121:108795. doi: 10.1016/j.diamond.2021.108795
|
6 |
TU Yuming, SHAO Gaoyan, ZHANG Wenjing,et al. The degradation of printing and dyeing wastewater by manganese-based catalysts[J]. Science of the Total Environment, 2022, 828:154390. doi: 10.1016/j.scitotenv.2022.154390
|
7 |
LEE J, VON GUNTEN U, KIM J H. Persulfate-based advanced oxidation:Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6):3064-3081. doi: 10.1021/acs.est.9b07082
|
8 |
ZHAO Chenhui, SHAO Binbin, YAN Ming,et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants:A review[J]. Chemical Engineering Journal, 2021, 416:128829. doi: 10.1016/j.cej.2021.128829
|
9 |
SHAD A, CHEN Jing, QU Ruijuan,et al. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone,UV/PMS and UV/H 2O 2:Kinetics,degradation products,and reaction pathways[J]. Chemical Engineering Journal, 2020, 398:125357. doi: 10.1016/j.cej.2020.125357
|
10 |
ZHENG Xiaoxian, NIU Xiaojun, ZHANG Dongqing,et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways:A review[J]. Chemical Engineering Journal, 2022, 429:132323. doi: 10.1016/j.cej.2021.132323
|
11 |
GUO Dongli, YOU Shijie, LI Fang,et al. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation:A review[J]. Chinese Chemical Letters, 2022, 33(1):1-10. doi: 10.1016/j.cclet.2021.06.027
|
12 |
|
|
XIAO Pengfei, AN Lu, WU Dedong. The use of carbon materials in persulfate-based advanced oxidation processes:A review[J]. New Carbon Materials, 2020, 35(6):667-683. doi: 10.1016/s1872-5805(20)60521-2
|
13 |
关朝婷. 碳纳米管/过硫酸盐体系氧化机制与卤代副产物生成控制[D]. 哈尔滨:哈尔滨工业大学,2020.
|
|
GUAN Chaoting. Oxidation mechanism of carbon nanotubes/persulfate system and control of halogenated by-products formation[D]. Harbin:Harbin Institute of Technology,2020.
|
14 |
郑晚. 氮掺杂石墨烯激活过硫酸盐降解水中有机污染物的性能及作用机理[D]. 杭州:浙江大学,2019.
|
|
ZHENG Wan. Performance and mechanism of nitrogen doped graphene activated persulfate for degradation of organic pollutants in water[D]. Hangzhou:Zhejiang University,2019.
|
15 |
YE Yuanyao, NGO H H, GUO Wenshan,et al. A critical review on utilization of sewage sludge as environmental functional materials[J]. Bioresource Technology, 2022, 363:127984. doi: 10.1016/j.biortech.2022.127984
|
16 |
赵迎新,麻泽浩,杨知凡,等. 污泥生物炭催化高级氧化过程进展[J]. 化工进展,2021,40(7):3984-3994.
|
|
ZHAO Yingxin, MA Zehao, YANG Zhifan,et al. Progress of advanced oxidation process catalyzed by sludge biochar[J]. Chemical Industry and Engineering Progress,2021,40(7):3984-3994.
|
17 |
LI Meng, LI Dongya, GUAN Zeyu,et al. Carboxy-functionalized sludge-derived biochar for efficiently activating peroxymonosulfate to degrade bisphenol A[J]. Separation and Purification Technology, 2022, 297:121525. doi: 10.1016/j.seppur.2022.121525
|
18 |
LIOU T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J]. Chemical Engineering Journal, 2010, 158(2):129-142. doi: 10.1016/j.cej.2009.12.016
|
19 |
徐增华. 生物质水热炭基多孔炭的制备及其电化学性能研究[D]. 杭州:浙江大学,2021.
|
|
XU Zenghua. Preparation and electrochemical properties of porous carbon based on biomass hydrothermal carbon[D]. Hangzhou:Zhejiang University,2021.
|
20 |
DING Kaili, ZHOU Xinyun, HADIATULLAH H,et al. Removal performance and mechanisms of toxic hexavalent chromium 〔Cr(Ⅵ)〕 with ZnCl 2 enhanced acidic vinegar residue biochar[J]. Journal of Hazardous Materials, 2021, 420:126551. doi: 10.1016/j.jhazmat.2021.126551
|
21 |
YAN Lilong, LIU Yue, ZHANG Yudan,et al. ZnCl 2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2020, 297:122381. doi: 10.1016/j.biortech.2019.122381
|
22 |
DI Jing, JAMAKANGA R, CHEN Qiang,et al. Degradation of Rhodamine B by activation of peroxymonosulfate using Co 3O 4-rice husk ash composites[J]. Science of the Total Environment, 2021, 784:147258. doi: 10.1016/j.scitotenv.2021.147258
|
23 |
HU Zhonghua, SRINIVASAN M P. Mesoporous high-surface-area activated carbon[J]. Microporous and Mesoporous Materials, 2001, 43(3):267-275. doi: 10.1016/s1387-1811(00)00355-3
|
24 |
XIAO Wei, GARBA Z N, SUN Shichang,et al. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye[J]. Journal of Cleaner Production, 2020, 253:119989. doi: 10.1016/j.jclepro.2020.119989
|
25 |
RUAN Xiuxiu, SUN Yuqing, DU Weimeng,et al. Formation,characteristics,and applications of environmentally persistent free radicals in biochars:A review[J]. Bioresource Technology, 2019, 281:457-468. doi: 10.1016/j.biortech.2019.02.105
|
26 |
WU Danping, CHEN Quan, WU Min,et al. Heterogeneous compositions of oxygen-containing functional groups on biochars and their different roles in rhodamine B degradation[J]. Chemosphere, 2022, 292:133518. doi: 10.1016/j.chemosphere.2022.133518
|
27 |
郑大洋,邹佳丽,徐皓,等. 污泥生物炭活化过一硫酸盐降解环丙沙星[J]. 环境科学,2023,44(12):6801-6810.
|
|
ZHENG Dayang, ZOU Jiali, XU Hao,et al. Degradation of ciprofloxacin by activating peroxymonosulfate with sludge biochar[J]. Environmental Science,2023,44(12):6801-6810.
|
28 |
MIAN M M, LIU Guijian, FU Biao,et al. Facile synthesis of sludge-derived MnO x -N-biochar as an efficient catalyst for peroxymonosulfate activation[J]. Applied Catalysis B:Environmental, 2019, 255:117765. doi: 10.1016/j.apcatb.2019.117765
|
29 |
WANG Yuxian, AO Zhimin, SUN Hongqi,et al. Activation of peroxymonosulfate by carbonaceous oxygen groups:Experimental and density functional theory calculations[J]. Applied Catalysis B:Environmental, 2016, 198:295-302. doi: 10.1016/j.apcatb.2016.05.075
|
30 |
王宇航,邓德明. 氮掺杂生物炭活化过硫酸盐去除罗丹明B[J]. 武汉大学学报(理学版),2022,68(2):137-145.
|
|
WANG Yuhang, DENG Deming. Removal of rhodamine B by persulfate activated with N-doped biochar[J]. Journal of Wuhan University (Natural Science Edition),2022,68(2):137-145.
|
31 |
OH W D, LIM T T. Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal:An overview[J]. Chemical Engineering Journal, 2019, 358:110-133. doi: 10.1016/j.cej.2018.09.203
|
32 |
ZENG Tao, LI Shuqi, HUA Jianan,et al. Synergistically enhancing Fenton-like degradation of organics by in situ transformation from Fe 3O 4 microspheres to mesoporous Fe,N-dual doped carbon[J]. Science of the Total Environment, 2018, 645:550-559. doi: 10.1016/j.scitotenv.2018.07.162
|
33 |
SUN Ping, LIU Hui, FENG Mingbao,et al. Nitrogen-sulfur Co-doped industrial graphene as an efficient peroxymonosulfate activator:Singlet oxygen-dominated catalytic degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 251:335-345. doi: 10.1016/j.apcatb.2019.03.085
|
34 |
WANG Lingli, LAN Xu, PENG Wenya,et al. Uncertainty and misinterpretation over identification,quantification and transformation of reactive species generated in catalytic oxidation processes:A review[J]. Journal of Hazardous Materials, 2021, 408:124436. doi: 10.1016/j.jhazmat.2020.124436
|
35 |
ZHANG Guicheng, YANG Xueying, WU Zhangxiong,et al. Fe-Mn bimetallic oxide-enabled facile cleaning of microfiltration ceramic membranes for effluent organic matter fouling mitigation via activation of oxone[J]. ACS ES & T Water, 2022, 2(7):1234-1246. doi: 10.1021/acsestwater.2c00076
|
36 |
ZHANG Wei, YAN Liangguo, WANG Qiaodi,et al. Ball milling boosted the activation of peroxymonosulfate by biochar for tetracycline removal[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106870. doi: 10.1016/j.jece.2021.106870
|
37 |
ZHU Hui, GUO An, WANG Siming,et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N Co-doped biochar:Emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450:138428. doi: 10.1016/j.cej.2022.138428
|
38 |
ZHANG Qiuya, SONG Jiabao, ZHANG Yanan,et al. Preparation of MnCeO x -modified tea waste biochar as peroxodisulfate activator for tetracycline degradation[J]. Journal of Water Process Engineering, 2022, 50:103209. doi: 10.1016/j.jwpe.2022.103209
|