1 |
MISHRA S, CHAUHAN G, VERMA S,et al. The emergence of nanotechnology in mitigating petroleum oil spills[J]. Marine Pollution Bulletin, 2022, 178:113609. doi: 10.1016/j.marpolbul.2022.113609
|
2 |
CHEN Dazhe, LAWRENCE K G, SANDLER D P. Nontraditional occupational exposures to crude oil combustion disasters and respiratory disease risk:A narrative review of literature[J]. Current Allergy and Asthma Reports, 2023, 23(6):299-311. doi: 10.1007/s11882-023-01078-x
|
3 |
WANG Xiao, YU Pengxiang, ZHANG Kangmin,et al. Superhydrophobic/superoleophilic cotton for efficient oil-water separation based on the combined octadecanoyl chain bonding and polymer grafting via surface-initiated ATRP[J]. ACS Applied Polymer Materials, 2019, 1(11):2875-2882. doi: 10.1021/acsapm.9b00585
|
4 |
BENSADOK K, BELKACEM M, NEZZAL G. Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation[J]. Desalination,2007,206(1/2/3):440-448.
|
5 |
WANG Chizhou, WU Shaodi, ZHANG Ning,et al. Efficient oil-water separation by novel biodegradable all cellulose composite filter paper[J]. Green Energy & Environment, 2023, 8(6):1673-1682. doi: 10.1016/j.gee.2022.03.013
|
6 |
GUPTA S, TAI N H. Carbon materials as oil sorbents:A review on the synthesis and performance[J]. Journal of Materials Chemistry A, 2016, 4(5):1550-1565. doi: 10.1039/c5ta08321d
|
7 |
LI Jian, SUN Bohui, ZUO Linxuan,et al. Facile preparation of light-weight and robust carbon aerogel monoliths for high-temperature thermal insulation and oil-water separation[J]. Carbon, 2024, 218:118734. doi: 10.1016/j.carbon.2023.118734
|
8 |
JUNAIDI N F D, OTHMAN N H, FUZIL N S,et al. Recent development of graphene oxide-based membranes for oil-water separation:A review[J]. Separation and Purification Technology, 2021, 258:118000. doi: 10.1016/j.seppur.2020.118000
|
9 |
LIU Hongzhi, GENG Biyao, CHEN Yufei,et al. Review on the aerogel-type oil sorbents derived from nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):49-66. doi: 10.1021/acssuschemeng.6b02301
|
10 |
HU Xiaodong, YANG Bo, HAO Ming,et al. Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation[J]. Carbohydrate Polymers, 2023, 305:120538. doi: 10.1016/j.carbpol.2023.120538
|
11 |
YU Haiyang, WU Min, DUAN Gaigai,et al. One-step fabrication of eco-friendly superhydrophobic fabrics for high-efficiency oil/water separation and oil spill cleanup[J]. Nanoscale, 2022, 14(4):1296-1309. doi: 10.1039/d1nr07111d
|
12 |
SUTAR R S, LATTHE S S, WU Xinna,et al. One-step candle soot-PDMS dip-coated superhydrophobic stainless steel mesh for oil-water separation[J]. Materials Letters, 2024, 357:135791. doi: 10.1016/j.matlet.2023.135791
|
13 |
XIE Shian, GUO Lijun, ZHANG Manbo,et al. Durable hydrophobic ceramics of Al 2O 3-ZrO 2 modified by hydrophilic silane with high oil/water separation efficiency[J]. Journal of Porous Materials, 2021, 28(4):1115-1127. doi: 10.1007/s10934-021-01055-7
|
14 |
LI Wei, SHEN Mao, YU Yunjie,et al. Superhydrophobic covalent organic frameworks prepared via nucleophilic substitution reaction for effective oil/water separation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 655:130239. doi: 10.1016/j.colsurfa.2022.130239
|
15 |
PHAN N M, KIM J H, KIM J,et al. Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oil-water separations[J]. Applied Surface Science, 2021, 570:151088. doi: 10.1016/j.apsusc.2021.151088
|
16 |
YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London Series Ⅰ, 1805, 95:65-87. doi: 10.1098/rstl.1805.0005
|
17 |
崔久云. 超亲水/水下超疏油PVDF复合膜的制备及油/水乳液分离性能研究[D]. 镇江:江苏大学,2020.
|
|
CUI Jiuyun. Preparation of super hydrophilic/underwater super oleophobic PVDF composite membrane and study on separation performance of oil/water emulsion[D]. Zhenjiang:Jiangsu University,2020.
|
18 |
TESHIMA H, KUSUDO H, BISTAFA C,et al. Quantifying interfacial tensions of surface nanobubbles:How far can Young’s equation explain?[J]. Nanoscale, 2022, 14(6):2446-2455. doi: 10.1039/d1nr07428h
|
19 |
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994. doi: 10.1021/ie50320a024
|
20 |
CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551. doi: 10.1039/tf9444000546
|
21 |
HUANG Shilin, RAS R H A, TIAN Xuelin. Antifouling membranes for oily wastewater treatment:Interplay between wetting and membrane fouling[J]. Current Opinion in Colloid & Interface Science, 2018, 36:90-109. doi: 10.1016/j.cocis.2018.02.002
|
22 |
APLAN M P, GOMEZ E D. Recent developments in chain-growth polymerizations of conjugated polymers[J]. Industrial & Engineering Chemistry Research, 2017, 56(28):7888-7901. doi: 10.1021/acs.iecr.7b01030
|
23 |
PI Peng, REN Zhiying, YANG Yu,et al. A review of various dimensional superwetting materials for oil-water separation[J]. Nanoscale, 2024, 16(37):17248-17275. doi: 10.1039/d4nr01473a
|
24 |
LI Bingfan, QIAN Xiaowen, RAN Longfei,et al. Applications and challenges of superwetted oil-water separation membranes in air under liquids and in specific environments[J]. Progress in Organic Coatings, 2024, 195:108673. doi: 10.1016/j.porgcoat.2024.108673
|
25 |
KIM B S, HARRIOTT P. Critical entry pressure for liquids in hydrophobic membranes[J]. Journal of Colloid and Interface Science, 1987, 115(1):1-8. doi: 10.1016/0021-9797(87)90002-6
|
26 |
MOSADEGH-SEDGHI S, RODRIGUE D, BRISSON J,et al. Wetting phenomenon in membrane contactors:Causes and prevention[J]. Journal of Membrane Science, 2014, 452:332-353. doi: 10.1016/j.memsci.2013.09.055
|
27 |
和玉光,郝思嘉,杨程. 石墨烯及其复合材料吸油性能研究进展[J]. 化学研究,2022,33(1):9-25.
|
|
HE Yuguang, HAO Sijia, YANG Cheng. Research progress of graphene and its composites for oil absorption[J]. Chemical Research,2022,33(1):9-25.
|
28 |
JUNAIDI N F D, OTHMAN N H, SHAHRUDDIN M Z,et al. Fabrication and characterization of graphene oxide-polyethersulfone(GO-PES) composite flat sheet and hollow fiber membranes for oil-water separation[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(5):1308-1320. doi: 10.1002/jctb.6366
|
29 |
YANG Shaolin, LI Jinze, YANG Na,et al. Underwater superoleophobic graphene oxide-connected cotton fibers membrane for antifouling oil/water separation[J]. Journal of Water Process Engineering, 2021, 44:102334. doi: 10.1016/j.jwpe.2021.102334
|
30 |
YANG Shaolin, LI Jinze, ZHEN Cheng,et al. Graphene-based melamine sponges with reverse wettability for oil/water separation through absorption and filtration[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):107543. doi: 10.1016/j.jece.2022.107543
|
31 |
ZHONG Qi, SHI Guogui, SUN Qing,et al. Robust PVA-GO-TiO 2 composite membrane for efficient separation oil-in-water emulsions with stable high flux[J]. Journal of Membrane Science, 2021, 640:119836. doi: 10.1016/j.memsci.2021.119836
|
32 |
XIE Wei, CHEN Mao, WEI Shuxia,et al. Lignin nanoparticles-intercalated reduced graphene oxide/glass fiber composite membranes for highly efficient oil-in-water emulsions separation in harsh environment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 648:129190. doi: 10.1016/j.colsurfa.2022.129190
|
33 |
FENG Xiaofang, YU Zongxue, LONG Runxuan,et al. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal[J]. Separation and Purification Technology, 2020, 247:116945. doi: 10.1016/j.seppur.2020.116945
|
34 |
MUSTAFA S A, AMOOEY A A, AL-JANABI O Y T. Demulsification of water-in-crude oil emulsion via novel Fe 3O 4@ethylene oxide-propylene oxide copolymer decorated graphene oxide or multiwall carbon nanotubes magnetic nanodemulsifiers[J]. Chemical Papers, 2024, 78(7):4165-4174. doi: 10.1007/s11696-024-03377-7
|
35 |
米远祝. 破乳剂、碳纳米管/超支化聚合物及其制备方法和应用[Z]. 2024-05-10.
|
36 |
LIU Juan, LI Xiaocheng, LIU Jun,et al. Molecular level separation of crude oil/water emulsion on carbon nanotube surface induced by weak interaction:A molecular dynamic simulation study[J]. Journal of Dispersion Science and Technology, 2020, 41(13):1991-2001. doi: 10.1080/01932691.2019.1645026
|
37 |
JURAIJ K, CHINGAKHAM C, MANAF O,et al. Polyurethane/multi-walled carbon nanotube electrospun composite membrane for oil/water separation[J]. Journal of Applied Polymer Science, 2022, 139(19):52117. doi: 10.1002/app.52117
|
38 |
WANG Huaiyuan, WANG Enqun, LIU Zhanjian,et al. A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication[J]. Journal of Materials Chemistry A, 2015, 3(1):266-273. doi: 10.1039/c4ta03945a
|
39 |
YE Shihang, WANG Bo, SHI Yutao,et al. Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation[J]. Composites Communications, 2020, 21:100378. doi: 10.1016/j.coco.2020.100378
|
40 |
ZHANG Tao, GU Bin, QIU Fengxian,et al. Preparation of carbon nanotubes/polyurethane hybrids as a synergistic absorbent for efficient oil/water separation[J]. Fibers and Polymers, 2018, 19(10):2195-2202. doi: 10.1007/s12221-018-8399-1
|
41 |
JING Zefeng, DING Jichao, ZHANG Tao,et al. Flexible,versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation[J]. Food and Bioproducts Processing, 2019, 115:134-142. doi: 10.1016/j.fbp.2019.03.010
|
42 |
LIU Yu, PENG Yinxian, ZHANG Tao,et al. Superhydrophobic,ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil-water separation[J]. Cellulose, 2018, 25(5):3067-3078. doi: 10.1007/s10570-018-1774-7
|
43 |
YUAN Dengsen, ZHANG Tao, GUO Qing,et al. Superhydrophobic hierarchical biomass carbon aerogel assembled with TiO 2 nanorods for selective immiscible oil/water mixture and emulsion separation[J]. Industrial & Engineering Chemistry Research, 2018, 57(43):14758-14766. doi: 10.1021/acs.iecr.8b03661
|
44 |
LIU Yu, SHI Tianhui, ZHANG Tao,et al. Cellulose-derived multifunctional nano-CuO/carbon aerogel composites as a highly efficient oil absorbent[J]. Cellulose, 2019, 26(9):5381-5394. doi: 10.1007/s10570-019-02484-z
|
45 |
DAI Yuting, JING Zefeng, QIU Zhiwei,et al. Multifunctional biomass carbon fiber aerogel based on resource utilization of agricultural waste—peanut shells for fast and efficient oil-water/emulsion separation[J]. Materials Science and Engineering:B,2022,283:115819.
|
46 |
冯子豪. 木质素基超细碳纤维气凝胶的制备及其性能研究[D]. 青岛:青岛大学,2024.
|
|
FENG Zihao. Preparation and properties of lignin-based ultrafine carbon fiber aerogels[D]. Qingdao:Qingdao University,2024.
|
47 |
陈鸿,刘其霞,季涛,等. 碳材料在纳米纤维油水分离膜中的应用进展[J]. 棉纺织技术,2022,50(7):79-84.
|
|
CHEN Hong, LIU Qixia, JI Tao,et al. Application progress of carbon material in nanofiber oil-water separation membrane[J]. Cotton Textile Technology,2022,50(7):79-84.
|
48 |
SUN Yan, YE Wenjie, XI Jianfeng,et al. Ultralight and shape recovery bio-based aerogel for oil-water separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(6):108822. doi: 10.1016/j.jece.2022.108822
|
49 |
HAN Peixing, NIE Wenjie, ZHAO Guanjia,et al. Theoretical investigation on the structure and physicochemical properties of choline chloride-based deep eutectic solvents[J]. Journal of Molecular Liquids,2022,366:120243.
|
50 |
LIU Xingyu, Hong OU, GREGERSEN H,et al. Deep eutectic solvent-based ultrasound-assisted extraction of polyphenols from Cosmos sulphureus [J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2023, 32:100444. doi: 10.1016/j.jarmap.2022.100444
|
51 |
LONG Sishi, FENG Yunchao, LIU Yizheng,et al. Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation[J]. Separation and Purification Technology,2021,254:117577.
|
52 |
MA Xiang, ZHOU Shuang, LI Junting,et al. Natural microfibrils/regenerated cellulose-based carbon aerogel for highly efficient oil/water separation[J]. Journal of Hazardous Materials, 2023, 454:131397. doi: 10.1016/j.jhazmat.2023.131397
|
53 |
LIN Jun, DU Yile, MA Xiaoxiao,et al. Choline chloride/urea etched carbon fiber to improve the elasticity of biomass-based carbon aerogel for efficient oil-water separation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 669:131506. doi: 10.1016/j.colsurfa.2023.131506
|
54 |
MEDRONHO B, LINDMAN B. Competing forces during cellulose dissolution:From solvents to mechanisms[J]. Current Opinion in Colloid & Interface Science, 2014, 19(1):32-40. doi: 10.1016/j.cocis.2013.12.001
|
55 |
MA Zihao, HAN Ying, XING Xinyue,et al. Preparation of micro-convex rough interface carbon aerogels with cellulose-lithium bromide(LiBr) molten salt hydrate gelled system and application of oil-water separation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 650:129624. doi: 10.1016/j.colsurfa.2022.129624
|
56 |
MEDRONHO B, LINDMAN B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms[J]. Advances in Colloid and Interface Science, 2015, 222:502-508. doi: 10.1016/j.cis.2014.05.004
|
57 |
MOFOKENG M, NTHUNYA L N, GUTIERREZ L,et al. Perflurooctyltriethoxy silane and carbon nanotubes-modified PVDF superoleophilic nanofibre membrane for oil-in-water adsorption and recovery[J]. Journal of Environmental Chemical Engineering, 2020, 8(6):104497. doi: 10.1016/j.jece.2020.104497
|
58 |
LI Bojun, TANG Wenjing, ZHOU Yue,et al. Bioinspired copper-graphene oxide hybrid membrane prepared via electrochemical-driven strategy:Design,mechanism,and oil-water separation[J]. Separation and Purification Technology, 2023, 319:124037. doi: 10.1016/j.seppur.2023.124037
|
59 |
CAI Huidong, DUAN Chongxiong, FU Mingli,et al. Scalable fabrication of superhydrophobic coating with rough coral reef-like structures for efficient self-cleaning and oil-water separation:An experimental and molecular dynamics simulation study[J]. Small, 2023, 19(32):2207118. doi: 10.1002/smll.202207118
|
60 |
吕欣妍. 金属氧化物纳米材料的表面修饰及其在分离与富集中的应用[J]. 长春:吉林大学,2022.
|
|
Xinyan LÜ. Surface modification of metal oxide nanomaterials and its application in separation and enrichment[D]. Changchun:Jilin University,2022.
|
61 |
FAN Songlin, LI Zhenzhou, FAN Chao,et al. Fast-thermoresponsive carboxylated carbon nanotube/chitosan aerogels with switchable wettability for oil/water separation[J]. Journal of Hazardous Materials, 2023, 433:128808. doi: 10.1016/j.jhazmat.2022.128808
|