1 |
GUAN Xiaohong, SUN Yuankui, QIN Hejie,et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:The development in zero-valent iron technology in the last two decades(1994-2014)[J]. Water Research, 2015, 75:224-248. doi: 10.1016/j.watres.2015.02.034
|
2 |
DENG Junmin, YOON S, PASTUREL M,et al. Interactions between nanoscale zerovalent iron(nZVI) and silver nanoparticles alter the nZVI reactivity in aqueous environments[J]. Chemical Engineering Journal, 2022, 450:138406. doi: 10.1016/j.cej.2022.138406
|
3 |
NGUYEN C H, TRAN M L, VAN TRAN T T,et al. Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119:80-89. doi: 10.1016/j.jtice.2021.02.001
|
4 |
XU Hao, GAO Mengxi, HU Xi,et al. A novel preparation of S-nZVI and its high efficient removal of Cr(Ⅵ) in aqueous solution[J]. Journal of Hazardous Materials, 2021, 416:125924. doi: 10.1016/j.jhazmat.2021.125924
|
5 |
|
|
YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(9):5065-5073. doi: 10.16085/j.issn.1000-6613.2021-2381
|
6 |
YI Yan, WANG Xiangyu, ZHANG Yaxian,et al. Formation and mechanism of nanoscale zerovalent iron supported by phosphoric acid modified biochar for highly efficient removal of Cr(Ⅵ)[J]. Advanced Powder Technology, 2023, 34(2):103826. doi: 10.1016/j.apt.2022.103826
|
7 |
NUNEZ GARCIA A, BOPARAI H K, DE BOER C V,et al. Fate and transport of sulfidated nano zerovalent iron(S-nZVI):A field study[J]. Water Research, 2020, 170:115319. doi: 10.1016/j.watres.2019.115319
|
8 |
SHAN Ali, IDREES A, ZAMAN W Q,et al. Synthesis of nZVI-Ni@BC composite as a stable catalyst to activate persulfate:Trichloroethylene degradation and insight mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(1):104808. doi: 10.1016/j.jece.2020.104808
|
9 |
LIU Xiaoyan, ZHANG Shenyu, ZHANG Xinying,et al. Cr(Ⅵ) immobilization in soil using lignin hydrogel supported nZVI:Immobilization mechanisms and long-term simulation[J]. Chemosphere, 2022, 305:135393. doi: 10.1016/j.chemosphere.2022.135393
|
10 |
LI Song, TANG Jingchun, WANG Lan,et al. Carbon coating enhances single-electron oxygen reduction reaction on nZVI surface for oxidative degradation of nitrobenzene[J]. Science of the Total Environment, 2021, 770:144680. doi: 10.1016/j.scitotenv.2020.144680
|
11 |
ZHANG Weijun, GAO Hongyu, HE Juanjuan,et al. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron(nZVI) with H 2O 2 system:Optimization of operating conditions and degradation pathway[J]. Separation and Purification Technology, 2017, 172:158-167. doi: 10.1016/j.seppur.2016.08.008
|
12 |
WANG Zhicheng, XIAN Weixin, MA Yongsong,et al. Catalytic ozonation with disilicate-modified nZVI for quinoline removal in aqueous solution:Efficiency and heterogeneous reaction mechanism[J]. Separation and Purification Technology, 2022, 281:119961. doi: 10.1016/j.seppur.2021.119961
|
13 |
QU Guangzhou, CHU Rongjie, WANG Hui,et al. Simultaneous removal of chromium(Ⅵ) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate[J]. Environmental Science and Pollution Research, 2020, 27(32):40826-40836. doi: 10.1007/s11356-020-10120-8
|
14 |
TAN Weitong, RUAN Yang, DIAO Zenghui,et al. Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber[J]. Chemosphere, 2021, 280:130626. doi: 10.1016/j.chemosphere.2021.130626
|
15 |
CHENG Qi, LI Qingrui, HUANG Xiaojie,et al. The high efficient Sb(Ⅲ) removal by cauliflower like amorphous nanoscale zero-valent iron(A-nZVI)[J]. Journal of Hazardous Materials, 2022, 436:129056. doi: 10.1016/j.jhazmat.2022.129056
|
16 |
ZHANG Huimin, RUAN Yang, LIANG Aiping,et al. Carbothermal reduction for preparing nZVI/BC to extract uranium:Insight into the iron species dependent uranium adsorption behavior[J]. Journal of Cleaner Production, 2019, 239:117873. doi: 10.1016/j.jclepro.2019.117873
|
17 |
CHEN Lishuo, NI Rui, YUAN Tengjie,et al. Effects of green synthesis,magnetization,and regeneration on ciprofloxacin removal by bimetallic nZVI/Cu composites and insights of degradation mechanism[J]. Journal of Hazardous Materials, 2020, 382:121008. doi: 10.1016/j.jhazmat.2019.121008
|
18 |
LI Shaolin, YAN Weile, ZHANG Weixian. Solvent-free production of nanoscale zero-valent iron(nZVI) with precision milling[J]. Green Chemistry, 2009, 11(10):1618-1626. doi: 10.1039/b913056j
|
19 |
WANG Shengsen, ZHAO Mingyue, ZHOU Min,et al. Biochar-supported nZVI(nZVI/BC) for contaminant removal from soil and water:A critical review[J]. Journal of Hazardous Materials, 2019, 373:820-834. doi: 10.1016/j.jhazmat.2019.03.080
|
20 |
WANG Qiliang, KANEL S R, PARK H,et al. Controllable synthesis,characterization,and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area[J]. Journal of Nanoparticle Research, 2009, 11(3):749-755. doi: 10.1007/s11051-008-9524-7
|
21 |
MAO Qiming, ZHOU Yaoyu, YANG Yuan,et al. Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H 2O 2 for ciprofloxacin removal from aqueous solution[J]. Journal of Hazardous Materials, 2019, 380:120848. doi: 10.1016/j.jhazmat.2019.120848
|
22 |
ZHANG Xiguo, WANG Wei, TAN Peng,et al. Study on the kinetics and mechanisms of Cr(Ⅵ) removal by nZVI modified with four modifiers[J]. Separation and Purification Technology, 2024, 342:127022. doi: 10.1016/j.seppur.2024.127022
|
23 |
STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron(nZVI):From synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287:618-632. doi: 10.1016/j.cej.2015.11.046
|
24 |
JIANG Shunfeng, LING Lili, CHEN Wenjin,et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors[J]. Chemical Engineering Journal, 2019, 359:572-583. doi: 10.1016/j.cej.2018.11.124
|
25 |
HUANG Ranran, FENG Tao, WU Si,et al. In-situ synthesis of magnetic iron-chitosan-derived biochar as an efficient persulfate activator for phenol degradation[J]. Environmental Research, 2023, 234:116604. doi: 10.1016/j.envres.2023.116604
|
26 |
HOAG G E, COLLINS J B, HOLCOMB J L,et al. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45):8671-8677. doi: 10.1039/b909148c
|
27 |
MONGA Y, KUMAR P, SHARMA R K,et al. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation[J]. ChemSusChem, 2020, 13(13):3288-3305. doi: 10.1002/cssc.202000290
|
28 |
MEHDI F, KOUROSH R, AHMAD Z,et al. A novel green synthesis of zero valent iron nanoparticles (nZVI) using three plant extracts and their efficient application for removal of Cr(Ⅵ) from aqueous solutions[J]. Advanced Powder Technology, 2017, 28:122-130. doi: 10.1016/j.apt.2016.09.003
|
29 |
ZHANG Xu, SUN Hongwei, SHI Yanbiao,et al. Oxalated zero valent iron enables highly efficient heterogeneous Fenton reaction by self-adapting pH and accelerating proton cycle[J]. Water Research, 2023, 235:119828. doi: 10.1016/j.watres.2023.119828
|
30 |
RIBAS D, PEŠKOVÁ K, JUBANY I,et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal, 2019, 366:235-245. doi: 10.1016/j.cej.2019.02.090
|
31 |
SONG Xiumei, TIAN Jiayu, MA Jiaxiang,et al. Peroxydisulfate activation by a versatile ball-milled nZVI@MoS 2 composite: Performance and potential activation mechanism[J]. Chemical Engineering Journal, 2023, 453:139830. doi: 10.1016/j.cej.2022.139830
|
32 |
ZHOU Long, LI Zheng, YI Yunqiang,et al. Increasing the electron selectivity of nanoscale zero-valent iron in environmental remediation:A review[J]. Journal of Hazardous Materials, 2022, 421:126709. doi: 10.1016/j.jhazmat.2021.126709
|
33 |
LIU Hong, WANG Qin, WANG Chuan,et al. Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment[J]. Chemical Engineering Journal, 2013, 215/216:90-95. doi: 10.1016/j.cej.2012.11.010
|
34 |
XU Min, MA Xiaoli, CHEN Yahui,et al. Spectroscopic investigation of Cr(Ⅵ) sorption on nZVI/biochar composites[J]. Journal of Molecular Liquids, 2022, 366:120262. doi: 10.1016/j.molliq.2022.120262
|
35 |
AKMARAL B R, GULIZIYA A S, YITZHAK M. Physicochemical evaluation of the effect of natural zeolite modification with didodecyldimethylammonium bromide on the adsorption of bisphenol-A and propranolol hydrochloride[J]. Microporous and Mesoporus Materials, 2021, 318:111020. doi: 10.1016/j.micromeso.2021.111020
|
36 |
LI Zhangtao, WANG Lu, MENG Jun,et al. Zeolite-supported nanoscale zero-valent iron:New findings on simultaneous adsorption of Cd(Ⅱ),Pb(Ⅱ),and As(Ⅲ) in aqueous solution and soil[J]. Journal of Hazardous Materials, 2018, 344:1-11. doi: 10.1016/j.jhazmat.2017.09.036
|
37 |
陈文静,石峻岭,李雪婷,等. 纳米零价铁改性生物炭对水中氨氮的吸附特性及机制[J]. 环境科学,2023,44(6):3270-3277.
|
|
CHEN Wenjing, SHI Junling, LI Xueting,et al. Adsorption characteristics and mechanism of ammonia nitrogen in water by nano zero-valent iron-modified biochar[J]. Environmental Science,2023,44(6):3270-3277.
|
38 |
GAO Ying, WANG Feifeng, WU Yan,et al. Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron(nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles[J]. Chemical Engineering Journal, 2016, 285:459-466. doi: 10.1016/j.cej.2015.09.078
|
39 |
LIU Zongtang, YANG Haini, WANG Mian,et al. Enhanced reductive debromination of decabromodiphenyl ether by organic-attapulgite supported Fe/Pd nanoparticles:Synergetic effect and mechanism[J]. Journal of Colloid and Interface Science, 2022, 613:337-348. doi: 10.1016/j.jcis.2022.01.064
|
40 |
YU Yunjiang, HUANG Zheng, DENG Dongyang,et al. Synthesis of millimeter-scale sponge Fe/Cu bimetallic particles removing TBBPA and insights of degradation mechanism[J]. Chemical Engineering Journal, 2017, 325:279-288. doi: 10.1016/j.cej.2017.05.018
|
41 |
杨思明,刘爱荣,刘静,等. 硫化纳米零价铁研究进展:合成、性质及环境应用[J]. 化学学报, 2022, 80(11):1536-1554. doi: 10.6023/a22080345
|
|
YANG Siming, LIU Airong, LIU Jing,et al. Advance of sulfidated nanoscale zero-valent iron:Synthesis,properties and environmental application[J]. Acta Chimica Sinica, 2022, 80(11):1536-1554. doi: 10.6023/a22080345
|
42 |
DONG Haoran, ZHANG Cong, DENG Junmin,et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution[J]. Water Research, 2018, 135:1-10. doi: 10.1016/j.watres.2018.02.017
|
43 |
TIAN Huifang, LIANG Ying, ZHU Tianle,et al. Surfactant-enhanced PEG-4000-nZVI for remediating trichloroethylene-contaminated soil[J]. Chemosphere, 2018, 195:585-593. doi: 10.1016/j.chemosphere.2017.12.070
|
44 |
DONG Haoran, ZHAO Feng, ZENG Guangming,et al. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water:Chemical transformation and structural evolution[J]. Journal of Hazardous Materials, 2016, 312:234-242. doi: 10.1016/j.jhazmat.2016.03.069
|
45 |
ZHANG Shuai, Honghong LÜ, TANG Jingchun,et al. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J]. Chemosphere, 2019, 217:686-694. doi: 10.1016/j.chemosphere.2018.11.040
|
46 |
DONG Duo, WANG Ruikun, GENG Pengfei,et al. Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater[J]. Journal of Environmental Management, 2019, 244:1-12. doi: 10.1016/j.jenvman.2019.04.062
|
47 |
MU Yi, JIA Falong, AI Zhihui,et al. Molecular oxygen activation with nano zero-valent iron for aerobic degradation of organic contaminants and the performance enhancement[J]. Acta Chimica Sinica, 2017, 75(6):538. doi: 10.6023/a17020047
|
48 |
KEENAN C R, SEDLAK D L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(18):6936-6941. doi: 10.1021/es801438f
|
49 |
KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4):1262-1267. doi: 10.1021/es7025664
|
50 |
张少朋,陈瑀,白淑琴,等. 氯氧铁非均相催化过氧化氢降解罗丹明B[J]. 环境科学,2019,40(11):5009-5014.
|
|
ZHANG Shaopeng, CHEN Yu, BAI Shuqin,et al. Catalytic degradation of rhodamine B by FeOCl activated hydrogen peroxide[J]. Environmental Science,2019,40(11):5009-5014.
|
51 |
KIM C, AHN J Y, KIM T Y,et al. Activation of persulfate by nanosized zero-valent iron(nZVI):Mechanisms and transformation products of nZVI[J]. Environmental Science & Technology, 2018, 52(6):3625-3633. doi: 10.1021/acs.est.7b05847
|
52 |
LIN C C, CHEN Y H. Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions[J]. Separation and Purification Technology, 2018, 194:388-395. doi: 10.1016/j.seppur.2017.10.073
|
53 |
NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):27-42. doi: 10.1016/j.apcatb.2010.06.033
|
54 |
XIONG Zhaokun, LAI Bo, YUAN Yue,et al. Degradation of p-nitrophenol(PNP) in aqueous solution by a micro-size Fe 0/O 3 process(mFe 0/O 3):Optimization,kinetic,performance and mechanism[J]. Chemical Engineering Journal, 2016, 302:137-145. doi: 10.1016/j.cej.2016.05.052
|
55 |
MALIK S N, GHOSH P C, VAIDYA A N,et al. Catalytic ozone pretreatment of complex textile effluent using Fe 2+ and zero valent iron nanoparticles[J]. Journal of Hazardous Materials, 2018, 357:363-375. doi: 10.1016/j.jhazmat.2018.05.070
|